Mid-Term Review of the UNDP/GEF project:

"Market Development & Promotion of Solar Concentrators for Process Heat Applications in India" (PIMS 4284; GEF 4134)

Report Submitted to UNDP India

Project period reviewed: March 2012-December 2014

March 2015, Final version

Mr. Johannes (Jan) VAN DEN AKKER Mr. Dinesh AGGARWAL

Disclaimer

Please note that the analysis and recommendations of this report do not necessarily reflect the views of the United Nations Development Programme, its Executive Board or the United Nations Member States. This publication reflects the views of its authors.

Acknowledgements

The authors wish to thank UNDP India and the CSH Project Team for the assistance and information provided during this mid-term review.

LIST OF ACRONYMS

AWP	Annual Work Plan
BEE	Bureau of Energy Efficiency
BIS	Bureau of Indian Standards
CBB	Central Boiler Board
CO_2	Carbon dioxide
CSH	Solar concentrating heat
CSP	Solar concentrating power
CST	Solar concentrating technology
DEA	Department of Economic Affairs
DPR	Detailed project report
EE	Energy efficiency
EOP	End-of-project
ESCO	Energy service company
FSP	
	Financed full-sized project
GW	Gigawatt, 1000 MW
GWh	Gigawatt-hours
GEF	Global Environment Facility
GHG	Greenhouse Gas
HL	Highly likely
HS	Highly satisfactory
HU	Highly unsatisfactory
IIT	Indian Institute of Technology
IREDA	Indian Renewable Energy Development Agency
IRENA	International Renewable Energy Agency
ISO	International Organization for Standardization
INR	Indian Rupiah
ITI	Industrial Training Institute
JNNSM	Jawaharlal Nehru National Solar Mission
kW	kilowatt
kWh	kilowatt-hour
L	likely
lakh	100,000
m^2	square meter
M&E	Monitoring and Evaluation
	0
ML	Moderately Likely
MoEF	Ministry of Environment and Forests
MS	Moderately Satisfactory
MNRE	Ministry of New and Renewable Energy
MTR	Mid-Term Review
MU	Moderately Unlikely
MU	Moderately Unsatisfactory
MW	Megawatt (million Watt)
NAPCC	National Action Plan on Climate Change
NGO	Non-Government Organization
NISE	National Institute of Solar Energy (f.k.a. SEC, Solar Energy Centre)
NPD	National Project Director
NPM	National Project Manager
O&M	Operation and maintenance
PIR	Project Implementation Review
PMU	Project Management Unit
PSAC	Project Steering and Advisory Committee
ProDoc	Project Document
PwC	PricewaterhouseCoopers
	-
R	Relevant

RE	Renewable energy
R&D	Research and development
S	Satisfactory
SECI	Solar Energy Corporation of India
STFI	Solar Thermal Federation of India
tCO ₂	ton of CO_2
ToR	Term of reference
U	Unsatisfactory
UN	United Nations
UNDAF	United Nations Development Assistance Framework
UNFCCC	United Nations Framework Convention on Climate Change
UNDP	United Nations Development Programme
US	United States
USD	US dollar

TABLE OF CONTENTS

LIST O	OF ACRONYMS	3
TABLE	OF CONTENTS	5
LIST O	OF BOXES	6
1. E	EXECUTIVE SUMMARY	7
2. II	INTRODUCTION	12
2.1 2.2 2.3	SCOPE AND METHODOLOGY	12
3. P	PROJECT DESCRIPTION AND CONTEXT	17
3.1 3.2 3.3 3.4	DESCRIPTION OF THE PROJECT: OBJECTIVE, OUTCOMES AND OUTPUTS	17 20
4. F	FINDINGS: PROJECT DESIGN AND FORMULATION	23
4.1 4.2		
5. F	FINDINGS: PROGRESS TOWARDS RESULTS	29
5.1 5.2		
6. F	FINDINGS: PROJECT IMPLEMENTATION	45
6.1 6.2 6.3	STAKEHOLDER ENGAGEMENT AND COMMUNICATIONS	46
7. S	SUSTAINABILITY	49
8.1 8.2	RECOMMENDATIONS	52 54
8.3		-
ANNE		
ANNE		
D.1 D.2	CONCENTRATED SOLAR TECHNOLOGIES	68
ANNE	X E. ABOUT THE EVALUATORS	72
ANNE	X F. CONSULTANT CODE OF CONDUCT FORM	73

LIST OF BOXES

Box 1	Overview of the structure of the MTR report and main review questions	13
Box 2	Summary of outcomes and outputs addressing main barriers to CSH application	18
Box 3	Project management structure	21
Box 4	Overview of project outcomes and outputs with progress indicators	25
Box 5	Progress towards results, Component 1	29
Box 6	List of 15 sites for online monitoring of CST	32
Box 7	Progress towards results, Component 2	33
Box 8	CSH India project website	36
Box 9	Progress towards results, Component 3	38
Box 10	Description of selected UNDP/GEF Project-supported CSH applications	39
Box 11	Overview of CSH project supported under the UNDP/GEF CSH India project	40
Box 12	Examples of demonstration projects supported	41
Box 13	Progress towards results, Component 4	42
Box 14	Project objective; global environmental impacts	44
Box 15	GEF project budget and expenditures 2012-Dec 2014	48
Box 16	Overview of project financing status	48
Box 17	Assessment of risks to project sustainability	50
Box 18	Mid-term review ratings and achievements summary table	52
Box 19	UNIDO/GEF Promoting business models for increasing penetration and scaling up of solar energy	56
Box 18	Type of solar concentrator technologies (CSTs)	68
Box 19	Temperature requirements of selected processes	69
Box 20	Overview of various CST technologies	70
Box 21	List of manufacturers in India for CSH supply and installation	71

Project information table

Project Title:	Market Development and Promotion of Solar Concentrators based Process Heat Applications in India (CSH, India)			
GEF Project ID:	4134		<u>Committed at</u> <u>endorsement</u> (USD Million)	<u>Realized co-financing / spent</u> <u>GEF budget at midterm</u> review (USD 10 ⁶)
UNDP Project ID:	4284	GEF financing:	4.40	1.68
Country:	India	IA/EA own:		
Region:	South Asia	Government:	7.35	2.75
Focal Area:	Climate Change	Others (private):	12.00	12.10
FA Objectives, (OP/SP):	CCM-3: Promote investment in renewable energy technologies (GEF-5)	Total co-financing:	19.35	14.85
Executing Agency:	UNDP	Total Project Cost:		
Other Partners	Ministry of New and	GEF endorsement: Dec 2011		ProDoc Signature (date project began): March 2012
involved:	Renewable Energy (MNRE)	(Operational) Closing Date:	Dec 2016	

Introduction and brief description of the project

The industrial sector is the second largest energy intensive sector in India. Process heat applications in sectors such as pharmaceuticals, metal plating, food processing, textiles and dairy require significant amount of heat in the low – medium temperature range of 90 to 350° C. They currently use fossil fuels (fuel, oil, diesel, coal) or biomass and electricity for their energy needs. The process heat needs can be met with Concentrating Solar Heat (CSH) systems along with suitable process integration and heat storage. Solar concentrator systems use lenses or mirrors to focus a large area of sunlight onto a small area and thus it is possible to achieve the temperatures mentioned above in the medium to be heated. There are about six Concentrating Solar Technologies (CST) with potential in India for heat applications (cooking, cooling, process heat) that differ in their output (temperature, specific thermal power), cost, module size and the installation area required.

As of 2011/12, there were about 200 industrial-commercial CSH applications worldwide, of which about 85 in India (not counting very systems, e.g. solar cookers). This places India as one of the leading countries in the practical CSH market, but concentrating solar technology cannot be considered as widely used neither globally nor in India. CSH is in a nascent stage only and a range of barriers exist that prevent the technology from becoming more widespread.

The Project "Market Development and Promotion of Solar Concentrator-based Process Heat Applications in India (CSH India)" aims to complement the efforts of the Government of India to promote the use of solar concentrators for process heat applications by overcoming existing barriers in technology, awareness, capacity, market and financial. The project is implemented by MNRE (Ministry of New and Renewable Energy) with support from the Global Environment Facility (GEF); the United Nations Development Programme (UNDP) acts as the GEF Executing Agency, providing overall management and guidance.

The project's Component 1 provides technology application packages, support for the introduction of four further CSH technologies, and standardization of CSH performance measurements; Component 2 provides

awareness and capacity building; Component 3 aims at supporting 30 demonstration projects $(15,000 \text{ m}^2)$ and 60 replication projects $(30,000 \text{ m}^2 \text{ of collector area})$; while Component 4 addresses financial barriers.

The project has been designed as a full-sized project with GEF financing of USD 4,400,000 and co-financing of USD 14,850,000, consisting of in-kind contribution from MNRE of USD 1,350,000, a MNRE contribution in the form of grant subsidy of USD 6,000,000 and contributions (in cash) from industries and financial institutions of USD 12,000,000. After signing the Project Document in March 2012, implementation started with the inception workshop in May 2012. The planned closing date is December 2016.

Project progress summary and MTR ratings

The main **findings** of the mid-term review are presented below:

Main criteria	Rating	Description
Progress towards results	HS	The Project has progressed most significantly in Component 1. Assessments of technology (field survey of 100 installations) as well as sectoral assessments and
- Component 1	- HS	of manufacturers have consolidated the baseline information available on the
- Component 2	- HS	options and issues with CST application in a range of heat applications for
- Component 3	- HS	various end uses (cooking, cooling, process heat). To remedy the barrier of
- Component 4	- MS	credibility of actual performance of CSH systems, a process of systematic
		monitoring of the CSH applications at 15 sites has been initiated. Testing
		facilities (both mobile and immobile) have been set up for this purpose.
		Quantified performance data will yield valuable info for prospective CSH users
		(confidence) and to manufacturers (suggestions for product improvement) alike ¹ .
		Formulation of BIS standards for testing procedures are currently in progress.
		Meanwhile, performance norms for various CSTs have been made available of anticipated heat delivery in different regions and parts of India
		anticipated near derivery in different regions and parts of india
		On capacity building (Component 2), the Project has advanced in a highly satisfactory manner, by holding 40 awareness workshops in different States, advertisements in dailies, supporting the publications of recurrent magazines and newsletters (Insolthermal Times; Sun Focus), and launching a dedicated website (www.cshindia.in). Technical skills and knowledge has been enhanced by a technical training programme on 'operation and maintenance and troubleshooting' with manuals for each of the 6 CSH technologies (in English and Hindi)
		In Component 3, technical support has been extended to the formulations of feasibility studies. Financial and technical support has been or is planned to be provided to 53 demonstration and replication projects with a total of 16,400 m ² of collector area, of which 20 have been installed (about 8,500 m ²) ² . In addition, the project has ensured that older (pre-project) systems that were non-functioning got repaired and operational again.
		Component 4 addresses financial barriers and this is where progress has been
		slowest. IREDA can provide loans for solar thermal systems, including CSH
		projects. However, no company has approached IREDA yet for loan requests,
		while a specific scheme for CSTs has not been announced. The import duty on
		mirrors for CST has been removed, thus lowering capital cost of CSH.
Design and relevance	- R	In India, a range of Indian organizations - from MNRE, academia, institutions to
L		commercial entrepreneurs - have done a considerable amount of necessary

¹ An assignment on 'Collection & Compilation of performance data on CST based systems through remote monitoring' has been recently awarded to a consulting firm and is to provide data for 80 systems by the end of the project.

² Data provided by PMU; most projects have been installed during 2014, some in 2013

		groundwork in terms of technology development and market promotion for solar concentrators for process heat applications (CSH) for cooking, cooling and industrial processes. Supporting this effort in the nascent market of CSH has been the target of the project and, given the lack of real experience worldwide with CSH, the Project thus has been supporting India in realizing a leap-frogging innovation. The project documentation we consider well-written, concise and encompassing the details needed, addressing the barriers and capacity strengthening needs and crafting these into an appropriate list of expected outcomes and outputs and activities (logframe), although the list of progress indicators in the logframe could have been improved.
Implementation and adaptive management - Management and reporting; M&E - Stakeholder involvement - Budget and co- finance	HS HS HS S	In Components 1 and 2 the project has overachieved and Component 3 is advancing more or less as planned. Financially delivery (taking into account the USD 500,000 committed to demo project support, but not booked yet as expenditure) follows the achievements in the Components as mentioned above. Where needed, the Project team has undertaken a number of adaptive management measures in response to issues encountered. The Project has been working very well with the various stakeholders, including local entities (state nodal agencies), institutes and academia (such as NISE and University of Pune), CST manufacturers and their associations, consultant companies as well as beneficiaries (from various industrial sectors as well as non-profit).
Sustainability	ML	Supporting solar thermal (including CSTs) is part of the Indian policy on sustainable energy and climate change with formulated targets. The CSH sector shows a growing trend with more Indian manufacturers and more applications in various industrial subsector and more CSTs being installed (apart from the Scheffler dishes and ARUN systems available only at the project's onset). There is no indication that state support for CSH (and renewable energy in general) will be cut back on the short run, but of course long-run developments are difficult to predict. The rating of ML is largely due to the fact that many CSH applications will remain near-commercial for a long period, i.e. with relative high investment cost and payback times. It will take some time that the technology needs less subvention. The idea, however, is that as the market expands, economics of scale will eventually lead to a drop in CST prices, while financial institutions may have a more positive look at CSH for lending, evidenced by more installation Indian-wide. Meanwhile, the project should help MEMR explore possibilities to make subsidies more linked with the system's performance as to encourage manufacturers to seek ways to lower costs.
Impact	L	Prior to project initiation, the focus of CSH in India was on smaller systems for institutional cooking, using Scheffler technology mainly. The project has successfully been demonstrating applications of other CSTs in a range of industrial sectors for other applications (cooling and process heat)

HS: highly satisfactory, S: satisfactory, MS: marginally satisfactory, R: relevant, ML: moderately likely

In conclusion, the Project has been instrumental in lowering *barriers* to more widespread application of the CSH. Since project inception, the number of projects (installed and planned) has increased significantly, as well the number of annual installations (and corresponding CST area). Apart from Scheffler (and ARUN), other CST technologies are making in-roads.

Recommendations

1) Increased focus on removing the financial barriers

Less progress has been made in addressing financial barriers and issues. In the second half, the attention should shift therefore more towards financial and policy issues.

The current subsidy system (30% of benchmark price) lowers payback times to 4-8 years, which is still not deemed financially attractive enough by beneficiaries. On the other hand, high subvention levels will deter manufacturers to improve their product and for beneficiaries to integrate CST more efficiently into their processes. Eventually, as the market develops and sales volumes increase, the cost of CSH will come down. Meanwhile, the Project can support the subvention discussion by (when more performance data become available as a result of online monitoring and demo project evaluations) updating and documenting actual financial and payback performance indicators as a basis for formulation of a suitable framework for CSH (under the existing renewable energy and solar energy policies) with a revised subsidy system, taking into account the performance of various CST per climatic region and type of application, and more clearly stating the role of financial institutions.

The latter will require capacity building and awareness creation amongst banks and other financial institutions, who are in general not familiar with the CST technology. It will also require the identification of appropriate financing mechanisms, in which the subsidy element would decrease slowly over time. To raise confidence level of potential investors, setting up 'risk guarantee schemes' may be optional. The Project has only just started involving commercial energy service companies (ESCOs). The ESCO mode can potentially help the beneficiary in some risk sharing after the warranty period expires. The Project should explore the pros and cons of the ESCO route further. Up to now, there has been no much progress in the 'ESCO route'. The Project has been optimistic and expects some 5-10 ESCO projects coming in 2015, so the proof of the pudding will be in the eating.

2) Continuation of training

A number of technical trainings were provided at various locations on 'operation, maintenance and troubleshooting'. These trainings were typically of 3-day duration. As part of the contracts, usually manufacturers are required to train personnel 'on-the-job' of the unit or company where the CST will be installed. However, trained personnel may depart after a while, thus leaving a knowledge gaps. Second, staff trained by a particular manufacturer may not be fully knowledgeable of the designs of other manufacturers (even if the same CST is concerned). Third, a 3-day training may not be enough and periodic 'refresher' trainings may be needed. The training modules have potential for future replication and could be 'institutionalised' (implemented by one or more institutions as a course, possibly on a self-sustenance basis). Thus, a recommendation is to refresh the stocktaking of training needs (especially as more systems of different CSTs will get installed over 2015-16) and adapt, expand and extend training and short courses in accordance with the findings of this assessment.

3) Testing

Testing focusses on the performance of CST systems, although in the project these will be all recently installed systems. However, CSTs may reach a 15-20 year lifetime. As no old equipment is currently installed, testing could be expanded by adding methods of artificially aging of the equipment. Two such tests include salt spray tests and abrasion test. Another advanced testing set-up would be for measuring optical performance of the CST (e.g. photogrammetry). These were not part of the Project design and its budget will not allow more funds to be allocated for testing equipment. Even if funding would be available, we would like to caution against establishing an expensive testing infrastructure, which may be not be used in the end in a cost-effective way. The best approach would be to see how the existing test centres (Pune, NISE) will function over the coming years, not only from a technical viewpoint, but cost-effectiveness as well. To improve their economics these can double as testing and as training facility. Towards the end of the CSH India Project it could be investigated how the test facilities can be expanded, e.g. by acquiring more equipment (to do salt spray and abrasion tests). Given the fact that perhaps the testing at Pune and NISE are the only facilities in the region, it should be investigated, if these could function at a regional level. Pooling funding for such a regional function could enable financing of expensive testing infrastructure in a more cost-effective way.

4) International cooperation

There is need for continuing cooperation between the various institutions, associations and agencies working on concentrated solar. Such cooperation may include data sharing (respecting confidentiality), knowledge sharing, joint events and promotional events. Regarding research institutions and academia this could include a more intense cooperation with institutions (and companies) abroad. India can learn from the advanced test laboratories and facilities abroad and more fully understand international 'best practices'.

Given India's position as a pioneer worldwide in (commercial) CSH application, this offers scope for South-South cooperation. A provision should be made in the Project's work plans to transfer the 'lessons learnt' in CST and heat applications to abroad. The CSH India Project has the potential to be presented as a 'best practice' and UNDP might devote some resources to present the Project, internally as an example of the potential role of CST, and externally, at sustainable energy and climate change fora and events.

5) UNIDO/GEF "Promoting business models for increasing penetration and scaling up of solar energy"

The project was initiated in 2014 (approved by GEF in Dec 2013) with an expected 5-year duration, and will focus on solar-based technology for industry, focussing on processes in the temperature range of 150-400°C in various industries, such as pulp and paper, food processing, fertilizer, pharmaceutical industries, textiles, desalination and tobacco industry. Its four components are similar to the CSH India Project, a) strengthening policy and institutional framework; b) technology investment and application (including 15-25 pilot demonstrations), c) scaling up (business models and financing; supply of quality components), and d) awareness raising and capacity building.

Supposedly, the focus will towards the lower temperature of the range 150-400°C in SMEs (small and mediumsized enterprises), while arrangements have made to avoid overlapping ('coordination platform' and participation in each other's Steering Committee). However, it might be difficult to avoid duplication and it is recommended that the functioning of the proposed 'coordination platform' will be closely monitored.

6) Suggestions for end-of-project report (Sustainability)

Towards the end of the project (Dec 2016) it might be helpful to commission an 'end-of-project' *impact study* to analyse to what extent the before-mentioned barriers to CST (technical, market demand, financial, informational, etc.) got removed and indicate what important *gaps* are still remaining, accompanied by a plan with suggested post-project *actions* to be implemented by the various actors involved (government, local government, academia and institutions, associations/representatives of manufacturers and beneficiaries). This report should also address an exit strategy for certain activities initiated or supported under the project, once project funding dries up, e.g. maintaining and regular updating of the CSH India website, publications, monitoring of CST installations, toll-free support line, etc.

Lessons learned

Although concentrated solar technology for heat applications (CSH) is not a technology that globally has met much recognition as a commercially viable technology, India has managed to initiate a market for the nearcommercial application of CSH. Although led by a small management team, the UNDP/GEF CSH India Project has had a significant influence in lowering barriers leading to a noticeable increase in the installation of CSH systems. One reason is that the Project has been embedded in a government policy promoting solar thermal technologies, and second, because it has been working closely with a range of stakeholders from other government entities, CSH suppliers, beneficiary industries and institution, an academia.

2. INTRODUCTION

2.1 Purpose of the mid-term review and objectives

The project *Market Development & Promotion of Solar Concentrators for Process Heat Applications in India* has been initiated with funding support from the Global Environment Facility (GEF) and UNDP (United Nations Development Programme) and implemented by the Ministry of New and Renewable Energy (MNRE). The project aims to increase the use and promotion of concentrating solar heat (CSH) systems for low and medium temperature process heat applications in industry.

The project started in March 2012 with a planned duration of almost 5 years (up to Dec 2016). Entering its third year, as per UNDP and GEF guidelines, a Mid-Term Review (MTR) needs to be carried out (as for all GEF-financed full-sized projects) by one or more independent consultants, 'independent' meaning not previously being involved in the project's design, management or implementation of activities. The consultants Jan Van den Akker (Netherlands) and Dinesh Aggarwal (India) were selected in consultation with the project implementing partner and contracted by UNDP India to carry out the review assignment.

Objective

The objective of this mid-term review is described in the Terms of Reference³, which mentions that the MTR will assess progress towards the achievement of the project objectives and outcomes as specified in the Project Document, and assess early signs of project success or failure with the goal of identifying the necessary changes to be made in order to set the project on-track to achieve its intended results. The MTR will also review the project's strategy and its risks to sustainability.

2.2 Scope and methodology

Before undertaking the MTR, an *Inception Report* was presented, including the proposed tasks, activities and deliverables, as well as a table of main review questions that need to be answered to determine and assess project results, and to identify where the information is expected to come from (e.g. documents, interviews and field visits). This *table of mid-term review criteria and questions* is presented in Box 1.

Sources of data and data collection

The review has been based using the following *sources of data* and *data collection tools* to answer the MTR evaluation questions:

- Desk review of documents (see Annex C):
 - Progress reports and project documents; such as the UNDP Project Document (ProDoc), GEF CEO Endorsement Request, as well as progress reports, such as the annual UNDP/GEF Project Implementation Reviews (PIRs); data on project budget and expenditures;
 - o Project technical reports; project manuals and guidelines
 - Background info (websites, reports, national policy papers, or other written info) from relevant government ministries and institutions, as well as other stakeholders; background info on application of solar thermal technology in industrial applications;
- Mission to India to hold interviews with stakeholders, beneficiaries and key informants to obtain in-depth information on impressions and experiences, explore opinions about the initiative and their suggestions for future action. The mission was carried out during 15-22 December 2014 with travel to Pune and Hyderabad to visit participating and beneficiary institutions. The mission schedule is given in Annex B.

³ See Annex A

Box 1 Overview of the structure of the MTR report and main review questions

Contents	Main review criteria and questions
Title page with basic report info	
Table of contents	
Acronyms and abbreviations	
Executive summary	
1. Executive Summary	
Project summary table	
Brief project description	
• Table with overview of ratings ⁴	and achievements
• Summary of conclusions and re	
2. Introduction	
• Purpose of the MTR and object	ives
• Scope and methodology of the I	
• Structure of the MTR	
3. Project description and development	nt context
 Development context; Problems 	
-	ctives, project participants, objectives and main outcomes; duration and timing)
 Main stakeholders 	
 Project management arrangeme 	nts
Findings	
4. Project design and strategy	• Does the project adequately take into account the national realities, both in
4.1 <u>Relevance⁵</u> and ownership	terms of institutional and policy framework in its design and
 Relevance and country 	implementation?
drivenness	• Is the project country-driven?
 UNDP programming 	• If the project progress is not good, what changes could have been made (if
and comparative	any) to the project design in order to improve the achievement of the
advantage	project's expected results during rest of the project implementation period
4.2 Results framework and	
design	
 Logframe; risks and 	
assumptions; Indicators	
 Stakeholder 	
participation; linkages	
with other initiatives;	
replication approach	
• Rating	
 5. Progress towards <u>results⁶</u>, 5.1 Attainment of outcomes and 	Review the logframe indicators against progress made towards the end-of- main the progress Towards Populate Matrix, with progress
	project targets using the Progress Towards Results Matrix, with progress
outputs 5.2 Attainment of project	indicators for outcomes/outputs, indicating baseline and target levels, as
objective and <u>impacts</u>	well as current level and/or reported in PIR linked with ratings ³ for each
• GHG emission reduction	outcome • Regults in terms of contribution to sustainable development benefits, as
estimates	• Results in terms of contribution to sustainable development benefits, as well as global environmental benefits (direct and indirect emission
• Other impacts	reduction); Compare and analyse the GEF Tracking Tool at the Baseline
5.3 <u>Effectiveness;</u> rating	with the one completed right before the Midterm Review
6. Project implementation and	
adaptive management	• <i>Management:</i> appropriateness of the institutional arrangement and whether there was adequate commitment to the project? Review overall
6.1 Adaptive management and	effectiveness of project management as outlined in the Project Document.
planning; monitoring and	Have changes been made and are they effective? Are responsibilities and
evaluation	reporting lines clear? Is decision- making transparent and undertaken in a
e · urunitori	reporting miles eleur, is decision making transparent and undertaken in a

⁴ Using a six-point scale that ranges from highly unsatisfactory (HU), unsatisfactory (U), marginally unsatisfactory (MU), marginally satisfactory (MS), satisfactory (S), highly satisfactory (HS)

⁵ Rated as Relevant (R) or Not Relevant (NR)

⁶ The underlined items in this table refer to the UNDP evaluation criteria of Relevance, Effectiveness, Efficiency, Results, Sustainability (see UNDP Handbook on Monitoring and Evaluation

Contents	Main review criteria and questions
Contents • Management • Work planning; reporting and communications • M&E systems 6.2 Stakeholder engagement 6.3 Budget and co-financing	 Main review criteria and questions timely manner? Recommend areas for improvement; Review the quality of execution of the Executing Agency/Implementing Partner(s) and recommend areas for improvement; Review the quality of support provided by the GEF Partner Agency (UNDP) and recommend areas for improvement Work planning: Review any delays in project start-up and implementation, identify the causes and examine if they have been resolved; Are work-planning processes results-based? If not, suggest ways to re-orientate work planning to focus on results?; Examine the use of the project's results framework/logframe as a management tool and review any changes made to it since project start. <i>Reporting:</i> Assess how adaptive management changes have been reported by the project Team and partners undertake and fulfil GEF reporting requirements (i.e. how have they addressed poorly-rated PIRs, if applicable?); Assess how lessons derived from the adaptive management process have been documented, shared with key partners and internalized by partners. How does the APR/PIR process has been helping to monitor and evaluate the project implementation and achievement of results? <i>Communications:</i> Review internal project communication with stakeholders: Is communication regular and effective? Are there key stakeholders left out of communication? Are there feedback mechanisms when communication is received? Does this communication with stakeholders contribute to their awareness of project results? Review
	when communication is received? Does this communication with stakeholders contribute to their awareness of project outcomes and
	 tools required? How could they be made more participatory and inclusive? Examine the <i>financial management</i> of the project monitoring and evaluation budget. Are sufficient resources being allocated to monitoring and evaluation? Are these resources being allocated effectively? <i>Stakeholders:</i> Has the project developed and leveraged the necessary and appropriate partnerships with direct and tangential stakeholders? Do local and national government stakeholders support the objectives of the project? Do they continue to have an active role in project decision-making that supports efficient and effective project implementation? To what extent has stakeholder involvement and public awareness contributed to the progress towards achievement of project objectives?
 7. <u>Sustainability⁷ and risks</u> potential <u>impacts</u> Institutional and governance, financial, economic, environmental 	 Comment on the Sustainability of the project in view of the resources committed by the UNDP- GEF in the long term; Commitment on the expected scenario of the project sustainability subsequent to the conclusion of the project: Socioeconomic: Are there any social or political risks that may jeopardize sustainability of project outcomes? What is the risk that the level of stakeholder ownership (including ownership by governments and other key stakeholders) will be insufficient to allow for the project outcomes/benefits to be sustained? Do the various key stakeholders see that it is in their interest that the project benefits continue to flow? Is there sufficient public/stakeholder awareness in support of the long term

 $^{^{7}}$ $\,$ Rated from likely (L), moderately likely (ML), moderately unlikely (MU) to unlikely (U) $\,$

Contents	Main review criteria and questions	
	 objectives of the project? Are lessons learned being documented by the Project Team on a continual basis and shared/ transferred to appropriate parties who could learn from the project and potentially replicate and/or scale it in the future? <i>Institutional:</i> Do the legal frameworks, policies, governance structures and processes pose risks that may jeopardize sustenance of project benefits? <i>Technology:</i> Description of status and issues with employing Concentrating Solar Heat (CSH) systems for low-medium temperature applications in selected sectors; <i>Financial:</i> What is the likelihood of financial and economic resources not being available once the GEF assistance ends (consider potential resources can be from multiple sources, such as the public and private sectors, income generating activities, and other funding that will be adequate financial resources for sustaining project's outcomes)? <i>Environmental:</i> Are there any environmental risks that may jeopardize sustenance of project outcomes? 	
 8.Conclusions and recommendations 8.1 Conclusions Summary of main findings and of ratings; statements on strengths and weaknesses Remaining barriers 8.2 Recommendations Numbered recommendations and actions for follow-up 8.3 Lessons learned 	 Identify remaining barriers to achieving the project objective in the remainder of the project, and by reviewing the aspects of the project that have already been successful, identify ways in which the project can further expand these benefits A MTR Ratings & Achievement Summary Table will be provided, summarizing the ratings³ on a) results, b) implementation and adaptive management, c) sustainability with a short description of the rating's justification Recommendations: Corrective actions for the design, implementation, monitoring and evaluation of the project Actions to follow up or reinforce initial benefits from the project Proposals for future directions underlining main objectives 	
Annexes		
• ToR		
 Itinerary, field visits and list o Documents reviewed and biblic 	* *	

- Documents reviewed and bibliography
- Background information on solar concentrating technology and application in India
- Signed UNEG code of conduct forms

The review of documents provides the basic facts and information for developing a first draft mid-term review (MTR) report, while the mission is needed to verify the basic facts, get missing data and to learn opinions of respondents to help interpret the facts⁸. The individual interviews with key informants were based on open discussion to allow respondents express what they feel as main issues, followed by more specific questions on the issues mentioned. The list of mid-term review questions of Box 1 was used as a checklist to raise relevant questions and issues during the interviews that correspond to the level and type of involvement of the interviewee or the organization visited.

Regarding the *data analysis and methods for analysis*, the documents listed in Annex C were reviewed and analysed. The notes of the interviews with key informants were used to verify facts and information presented in reports and documents and helped to formulate the conclusions and recommendations. A seven-day mission has the limitation of potentially giving a snapshot impression only. Nonetheless, the mid-term reviewers feel that this mix of data collection and analysis tools has yielded viable answers to the evaluation/review questions within the limits of budget resources for the review and time availability.

⁸ The Inception report mentions the use of a pre-determined questionnaire as an option. However, this was not deemed necessary in the end, as in the Evaluator's view the open-style interviews and documents reviewed provided sufficient and valid information.

This review has been conducted in accordance with the principles outlined in the United Nations Evaluation Group 'Ethical Guidelines for Evaluation' (see Annex G).

2.3 Structure of the mid-term review report

The review has been undertaken in accordance with the new UNDP guidelines on mid-term reviews (UNDP, 2014)⁹ as well as general criteria of UNDP evaluations. This report is structured according to the table of contents that is given in Annex B of the MTR guidelines (UNDP, 2014), starting with an Introduction chapter, followed by Project description, Findings and ending with a chapter on Conclusions and recommendations, plus annexes. For the reader's easy reference, Box 1 shows where the main review criteria and questions of the MTR can be located in the various sections of the report.

⁹ Project-Level Monitoring: Guidance for Conducting Mid-term Reviews of UNDP-supported, GEF-financed projects (UNDP, 2014), Also taking into account elements of the Guidance for Conducting Terminal Evaluations of UNDP-supported, GEF-financed projects (UNDP, 2012)

3.1 Development context; problems that the project seeks to address

The industrial sector is the second-largest energy using sector in India after the residential sector, accounting for about 37% of the total consumption. Key energy using industries (such as pharmaceuticals, chemicals. metal treatment, textiles, and food and dairy processing) have a significant requirement for low-medium temperature heat (of 90-250°C) as steam, hot water, hot air and hot oil in industrial production processes. For example, industries used 11,000 tons of oil products, 153,000 tons of coal and about 383,500 GWh of electricity¹⁰ in 2012 at an estimated USD 12 billion in cost.

Significant quantities of low-medium temperature process heat are also required in the commercial sector in hotels, hospitals and other institutional buildings for space cooling, cooking and water heating. This low-medium temperature heat is primarily provided by fuel oil, coal and electricity for heating as well as cooling purposes. Low-cost natural gas is not widely available for process heat uses in India, as in most other major countries.

India, generally has a very good solar energy potential of around 5-7 kWh/m²/day. A significant part of India's low-medium temperature process heat needs can be met by concentrating solar heat (CSH) technology systems, alongside appropriate process integration and suitable heat storage. Unlike flat-plate solar thermal systems (e.g., used in solar water heaters), solar concentrator systems use lenses or mirrors to focus a large area of sunlight onto a small area and thus it is possible to achieve higher temperatures than are possible with non-concentrator technologies. There are various CSH technologies that differ considerably in their output (temperature, specific thermal power), cost, module size and the installation area required. A short overview of the characteristics and variety in CSH systems is given in Annex D. By employing CSH technology, India will be avoiding the use of fossil fuels, and this would reduce global CO_2 emissions, local air pollution, and lessen India's growing dependence on expensive imports of oil and oil products.

Concentrating solar technology is not widely used, neither globally nor in India. By the time of project formulation, there were around 100 working industrial-sized CSH (concentrating solar heat) installations worldwide, of which about 70 in India (2010).) This places India as one of the leading countries in the practical CSH market and it still maintains that position. In 2011/12, there were about 200 industrial CSH worldwide, of which about 85 in India (see Annex D). The *Strategic Plan 2011-17* for the New and Renewable Energy Sector aspires to have 1000 systems installed by 2022. The 12th Five-Year Plan (2012-2017) envisages the installation of 180,000 m² (for cooking, cooling and process heat)¹¹. The 11th Plan (2007-2012) aimed at 250,000 m², but only succeeded in installing 15,000 m². These figures indicate that the CSH is in a nascent stage only and a range of barriers exist that prevent the technology from becoming more widespread (see Box 2).

3.2 Description of the project: objective, outcomes and outputs

The project "Market Development and Promotion of Solar Concentrator-based Process Heat Applications in India", referred to shortly as "CSH India" or the "Project" in this text, aims to complement the efforts of the Government of India to promote the use of solar concentrators for process heat applications by overcoming

¹⁰ Presentation at 4th PSAC Meeting; UNIDO/GEF PIF "Promoting business models for increasing penetration and scaling up of solar energy; IEA data on fuel consumption (2012; www.iea.org

¹¹ See Annexure 14,4 in Volume 2. It should be noted that the Plan was released after the project was designed. The Project Document assumes a business-as-usual scenario of 3,000 m² per year and aims to increase it to 15,000 m² in the alternative scenario.

existing barriers in technology, awareness, capacity, market and financial. The project concept was presented through the United Nations Development Programme (UNDP) to access Global Environment Facility (GEF) grant support.

The project's Component 1 provides technology application packages, support for the introduction of other types of CSH technologies, and standardization of CSH performance measurement; Component 2 provides awareness and capacity building; Component 3 aims at supporting 30 demonstration projects $(15,000 \text{ m}^2)$ and 60 replication projects $(30,000 \text{ m}^2)$; while Component 4 addresses financial barriers. The expected direct emission reductions from the demonstration and replication CSH projects during the 5-year GEF project duration will be 32,900 tCO₂. Over the economic lifetime of 20 years for the project-supported CSH applications, cumulative direct emission reductions will be 315,000 tCO₂.

Box 2 summarizes how the project's main outputs/activities address the barriers and gap identified in the project formulation stage. The list of progress indicators for each outcome and output is presented in Box 4.

Outcome	Output	Barrier addressed	
Component 1: Technical cap	acity development		
 1.1 Enhanced understanding of CSH technologies, applications and markets 1.2 Adoption of standards and specifications for guidance of manufacturers and users for assurance of CSH quality, safety, and 	 1.1.1 Developed technology application information packages and characterised technologies, applications, and markets; 1.2.1 Developed CSH performance standards and technology specifications 	 Non-availability of performance measurement standards and protocols for measuring the performance of CSH (concentrated solar heat) applications (and making it difficult to compare CSH across different technologies and applications) Non-availability of testing facilities for CSH technologies in India (independently verified performance characteristics are not available) 	
performance			
4	hancement and capacity building		
2.1 Strengthened technical capacity and awareness of stakeholders of CSH systems for industrial/ institutional process heat applications	 2.1.1 Trained manufacturers/ vendors, installers and CSH users 2.1.2 More trained technical consultants that provide technical services to both CSH system components & equipment manufacturers and users 2.1.3 Established and supported industry- academic partnership through research programmes to build future capacities 2.1.4 Trained staff at SEC and staff at regional testing centre 2.1.5 Completed awareness enhancement programmes for policy makers, academicians, industries, financial institutions, etc. to facilitate replications 2.1.6 Completed promotional campaign for CSH 2.1.7 Established Concentrating Solar Heat Technology Platform and is operational 	 Lack of awareness amongst industry (including top level management levels) and policy makers on the potential of CSH applications to reduce process heat supply costs; Limited capacity of the CSH technology supply chain (limited number of installers) to install on time and provide adequate maintenance; Lack of knowledge of CSH technologies and system factors amongst technical consultants to applicable industries and sectors; Limited availability of skilled and semi-skilled technical manpower in the CSH industry (each industrial subsector has its own set of process issues and its own technical experts and energy auditors and these general lack knowledge on how to apply CSH in their subsectors); 	

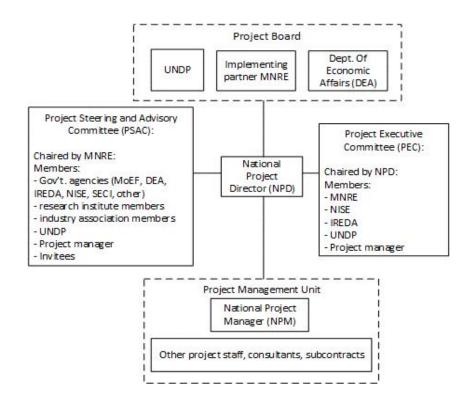
Box 2 Summary of outcomes and outputs addressing main barriers to CSH application

2.2	CSH Project deliverables facilitated and/or influenced the widespread replication of CSH technology applications in India	2.2.1	Documentations on the Project outputs, case studies, best practices and lessons learnt disseminated to ensure larger replication	• Limited interface between the CSH industry, experts and applicable academic institutes (apart from the Mumbai-Pune area there is no such interaction, which would benefit R&D and training of human resources)
Com	-	ration o	f CSH technologies for various	
3.1	applications Increased number of commercial and near- commercial CSH technologies for diversity of applications Improved technical and economic performance of commercial and near- commercial CSH technologies in an increased diversity of applications	3.1.1 3.1.2 3.1.3 3.1.4 3.2.1 3.2.2	Completed feasibility studies for demonstration and replication projects of various CSH technology applications Completed Detailed Project Reports (DPRs) for demonstration projects Developed and commissioned demonstration projects in at least 5 sectors Results of the performance monitoring, analysis, and evaluation of demonstration projects Documentation of results of demonstration and replication projects Completed performance monitoring, analysis and overall evaluation for demo and replication projects	 A full set of CST (concentrated solar technologies) for process heat applications is yet to be demonstrated. Only two of the 5 technologies, ARUN and Scheffler (see Annex D) have been deployed; most CSH applications have been for institutional cooking (using Scheffler) No public domain documentation available for existing CSH applications (a comparative assessment of CSH projects in India on performance, issues and lessons learnt would be of great value);
Com		nancial	approach in the adoption of CSH	
	technologies and app	lication	s in India	
4.1	Enhanced understanding of the financial viability of CSH technologies and measures to mitigate investment risks	4.1.1	Documented financial viability of CSH technologies, applications, and mitigation approaches of investment risks	 Low payback on CSH investments (over 4-10 years, while entrepreneurs generally want 2-4 years) Lack of incentives based on CSH performance (subsidies for CSH are based on the area of installed CSH collectors and not on the actual
4.2	Promulgation of favourable financial policies that promote increased use and promotion of CSH for low and medium temperature process heat applications	4.2.1	Formulated recommendations for financial and promotional policies and strategies for adoption by Government of India	quantity of process heat produce and this system favours low-cost and low- efficiency CSH technologies)

The total budget for the project is USD 23,750,000, of which GEF: USD 4,400,000. The co-financing of USD 19.35 million MNRE (grants, mainly CSH subsidies) is USD 6,000,000; MNRE (in kind): 1,350,000; industries: USD 6,000,000 and financial institutions: USD 6,000,000.

The project concept (PIF, Project Identification Form) was approved by the GEF CEO in January 2010 and the project preparation grant (PPG) in May 2010. Endorsed by GEF in December 2011, the Project Document was signed in March 2012, after which implementation started for a period until December 2016.

3.3 Main stakeholders


The *Ministry of New and Renewable Energy (MNRE)* is responsible for framing policy and implementing programmes for development and promotion of new and renewable energy sources in India. MNRE serves as the main client (Implementing Partner/Executing Partner) in this project. Apart from MNR, key stakeholders in the project are:

- *National Institute of Solar Energy* (formerly Solar Energy Centre, SEC) is a dedicated unit of MNRE with a focus on the development of solar energy technologies and to promote solar applications through product development;
- *IREDA* (India Renewable Energy Development Agency Ltd) is a state-owned enterprise under MNRE that provides financing for and promotes investment in renewable energy, energy efficiency and new and emerging technologies;
- *SECI (Solar Energy Corporation of India)* is another government enterprise under MNRE (established in 2011) with the overall view to facilitate implementation of the National Solar Mission (see Section 4.1 or Annex D) and achieving the targets set therein;
- *Ministry of Environment and Forests (MoEF)* is the GEF focal point for India and thus will liaise with GEF and provide overall coordination of the project;
- *Bureau of Indian Standards (BIS),* is the lead Indian agency concerning standardization, certification and quality control, as well as providing informational and training services in these areas; BIS is involved in the process of formulation of standards concerning solar concentrator technologies;
- Department of Science and Technology (DST), one of the three departments of the Ministry of Science and Technology is supporting the Solar Energy Research Initiative (SERI) in India. SERI supports research, development and demonstration of solar technologies and CSH technologies and applications are identified areas of DST work;
- *Central Boilers Board (CBB)*, under the Department of Industrial Policy and Promotion, is responsible for regulations for boiler materials, design, construction and registration and inspection (CSH for steam generation in boilers falls under the purview of CBB);
- *Department of Economic Affairs (DEA)* of the Ministry of Finance, is in charge of relations with multilateral institutions and as such usually represented in the project boards of UNDP-supported projects;
- The *Confederation of Indian Industry (CII)* is a non-government, not-for-profit, industry led and industry managed premier business association. Solar thermal stakeholders are organised in the *Solar Thermal Federation of India*. Within this group, *solar concentrator manufacturers* responsible for the supply of CSH systems are important stakeholders. At the project's start there were about 10 solar concentrator manufacturers involved in producing CSH systems in India with several others planning to enter the CSH market; currently there are about 20 (as listed by MNRE; see Annex D);
- A number of technology institutes and academia have been involved in research, training and development work of CST, such as the University of Pune, Indian Institute of Technology (Mumbai, Chennai)

3.4 Project management arrangements

The project is implemented by MNRE, who assumes the overall responsibility for the achievement of project results as the Implementing Partner (GEF Local Executing Agency). UNDP acts as the GEF Executing Agency, providing overall management and guidance, and is responsible for monitoring and evaluation of the project as per GEF and UNDP requirements.

Box 3 Project management structure

The *Project Steering Committee (PSC)* is responsible for making management decisions. The PSC plays a critical role in project monitoring and evaluation by quality assuring these processes and products, and using evaluations for performance improvement, accountability and learning. The PSC approves the Annual Work Plans (AWPs). Based on the AWP, the PSC considers and approves the quarterly plans and also approves any essential deviations from the original plans. In the PSC meetings representatives from MNRE, MoEE, UNDP and DEA participate as well as invitees, as and when needed, from other institutions. The Project Document mentions the *Project Advisory Committee (PAC)*, composed of MNRE, Ministry of Environment and Forests (MoEF), BIS, BEE, industry associations' representatives, to which representatives from academia, industry associations and financial institutions can be invited on an as-needed basis.

MNRE has designated a senior official as the *National Project Director (NPD)* for the project¹². The NPD is responsible for overall guidance to project management, including adherence to the achievement of planned results as outlined in the Project Document (ProDoc) and Inception Report, and for the use of UNDP funds. The NPD also ensures coordination with various ministries and agencies.

A *Project Management unit (PMU)* has been established to implement the project. The PMU is headed by a full-time *National Project Manager (NPM)*¹³ and is responsible for implementing day-to-day activities in coordination with the National Project Director (NPD). The NPM is supported by Technical Officers and support staff. As needed, technical experts from different disciplines and project management consultants with expertise in project, finance, legal matters, etc. are recruited on a longer-term or short-term time basis depending upon the work load.

¹² Sh. Tarun Kappor, Joint Secretary of MNRE

¹³ Mr.. A.K. Singhal has been NPM since project initiation.

At project inception, the project management structure was changed slightly. A *Project Executive Committee* (*PEC*) was formed that meets once in 2 months for day-to-day execution of the Project. The PEC is chaired by the National Project Director with representatives from MNRE, NISE, IREDA, PMU and UNDP. Following the signature of the Project Document, the PEC met first time in April 2012 and thereafter has met 12 times. The meetings of Steering and Advisory Committee were joined into the *Project Steering and Advisory Committee (PSAC)* chaired by the Secretary of MNRE. Participants have been senior staff members from MoEF, DEA, UNDP, IREDA, NISE, SECI, Ministry of Textile, Ministry of Food Processing Industries, Ministry of Micro, Small & Medium Industries, Bureau of Energy Efficiency, CII, Central Boiler Board, IIT Bombay as well as members from research institutions and industry associations. The PSAC meets usually once in 6 months for guidance and directions to the PMU. Three meetings have been held with the fourth meeting planned for January 2015.

4. FINDINGS: PROJECT DESIGN AND FORMULATION

This part of the report presents an overview of the evaluation findings. Due to the size of the text it has been divided over three chapters that cover a) project design & formulation, b) project implementation and c) project results and sustainability. The findings are based around the evaluation criteria and questions (see Box 1), so that the reader can make a link with what was asked and what was found.

This Chapter 4 evaluates the design of the Project, which was the result of consultations and background analysis during 2009-2011, and relevance in India's development context.

Mid-term review questions (see Box 1)

- Does the project adequately take into account the national realities, both in terms of institutional and policy framework in its design and implementation?
- Is the project country-driven?
- If the project progress is not good, what changes could have been made (if any) to the project design in order to improve the achievement of the project's expected results during rest of the project implementation period

4.1 Relevance and country ownership

Country drivenness

As explained in the previous Chapter 3 solar thermal energy has been a priority for the Ministry of New and Renewable Energy (MNRE) as expressed in various policy documents and plans (the reader is referred to Annex D for more details), such as the Eleventh Plan (2007-2012), Twelfth Plan (2014-2017), National Action Plan on Climate Change (NAPCC) and the Strategic Plan 2011-17 for the New and Renewable Energy Sector.

In this respect, the solar water heating industry (with flatbed solar collectors) in India is fairly well-developed and is already on an accelerated growth path. Solar concentrating technologies (CST) are mainly used for power generation in a few countries, such as USA or Spain; usage for heat applications is often limited to a few small-scale applications, for example Scheffler-type dishes for cooking.

In India, a range of Indian organizations – from MNRE, academia, institutions to commercial entrepreneurs have done a considerable amount of the necessary groundwork in terms of technology development and market promotion for solar concentrators for process heat applications (CSH) for cooking, cooling and industrial processes. This work has led to the commercial emergence of two concentrated solar technologies (CST) technologies in India, i.e. the fixed-focus parabolic dish (e.g. Scheffler dish) and the moving-focus parabolic dish (e.g. ARUN dish). Supporting this new market of CSH has been the target of the project and, given the lack of real experience worldwide with CSH, the Project is thus supporting India in realizing a leap-frogging innovation. Within the above-mentioned Plans specific targets are given for solar thermal energy, including CSH. For example, by 2011 installed capacity for solar thermal was an estimated 4.4 million m² (flatbed and concentrating technologies) with the aim to be expanded to 11 million m² by 2017 (Strategic Plan NRE) and 20 million m² by 2022 (Solar Mission of NAPCC¹⁴). Since over 15 years MNRE has been promoting solar thermal in general, but the results of CST have been negligible as compared to the flatbed solar thermal technology.

¹⁴ The Jawaharlal Nehru National Solar Mission (JNNSM) was launched in January 2010 and has set ambitious targets in solar energy by 2022, including 20 GW of grid-connected solar power, 2000 MW of off-grid solar applications, 20 million solar lights in rural homes as well as 20 million m² of solar thermal collector area, including solar concentrating technologies,

UNDP programming and comparative advantage

The CSH India project fits with the UN Development Assistance Framework (UNDAF), 2008-2012 (Outcome 4: "By 2012, the most vulnerable, including women and girls, and government at all levels have enhanced abilities to prepare, respond and adapt/recover from sudden and slow onset of disasters and environmental changes". Under this UNDAF Outcome 4; the UNDP Country Programme (2008-12) refers to Output 4.3 "Strengthened capacity for low carbon development and sustainable management of natural resources", for which the Indicator 4.3a "Number of clean technologies/mechanisms piloted" has direct relevance to the Project.

The project also fits within priorities of the UNDAF and UNDP Country Programme 2013-2017 (that were formulated after CSH India's inception). UNDAF Outcome 3 refers to "Government, industry and other relevant stakeholders actively promote environmental sustainability and enhanced resilience of communities in the face of challenges of climate change, disaster risk and natural resource depletion" with as Indicator "Proportion of policies, plans and programmes that incorporate climate change, disaster risk reduction (DRR) and natural resource management (NRM) concerns". The Country Programme further mentions as areas in which UNDP can contribute "To adopt models for sustainable NRM, climate change adaptation, DRR and livelihood promotion through better access to clean energy" and "Innovative sector specific business models for scaling up cleaner technologies".

UNDP has quite some experience in implementing GEF-funded sustainable energy projects in India. Recent examples are: Effective Implementation of the State Level Climate Change Action Plans; Scale-up of Access to Clean Energy for Rural Productive and Domestic Uses; Low Carbon Campaign for Commonwealth Games 2010 Delhi; Energy Efficiency Improvements in Commercial Buildings; Improving Energy Efficiency in the Indian Railway System; Advanced Energy Efficiency Technology in Electric Motors; Energy Conservation in Small Sector Tea Processing Units; Energy Efficiency Improvement in the Steel Rerolling Mill Sector; Removal of Barriers to Biomass Power; Development of High Rate Bio-methanation Processes; Coal-bed Methane Capture and Commercial Utilization; and others.

4.2 Results framework and design

4.2.1 Results framework with risks and assumptions and list of indicators

The Project Document (ProDoc) we consider well-written, concise and encompassing the details needed. The ProDoc details the management arrangements (described in the preceding Chapter 3).

It addresses the barriers and addresses the capacity strengthening needs into an appropriate list of expected outcomes and outputs and activities needed to realize the results, referred as the Project Results Framework (or project logical framework, referred to as "logframe"). The ProDoc describes the numerous risks that would be encountered by a Project of this nature and scale and critical assumptions on their occurrence and strength in section 8 of Part B of the ProDoc on a general level and, per outcome, in the logframe. These risks are monitored in UNDP's ATLAS system and critical risks discussed in the progress reports. A description of risks, measurements taken and (probable) impact on sustainability is given in Section 6.3.

The logframe gives quite an extensive list of progress indicators for outcomes as well as outputs. The list meets the standard of SMART¹⁵ indicators. However, we noted that various indicators at outcome level are repeated several times and the sheer multitude of indicators makes reading difficult in the progress reporting, such as the PIRs. Some outcome indicators are more output indicators and are sometimes copied in the output list as well and some output indicator could have been combined. This concern was also expressed by participants in

¹⁵ Specific, Measurable, Achievable, Relevant and Time-Bound (SMART)

the Project's Inception workshop¹⁶. We can add that 'numbering' the indicators in the long list would also have been beneficial for the reader. Box 3 provides an overview of the progress indicators. These are based on the project documentation and subsequent progress reports (PIRs), but to which we took the liberty to put in small alterations:

- We numbered the Indicators in the following manner: A), B), for objective and outcome indicators and 1), 2), for output-related indicators; and sometimes grouped together, giving them numbering a, b, such as in 9a) and 9b)
- Repetitive indicators are deleted. To give an example, the indicator "no. of CSH replication projects" figures in Component 2 and 3, in Outcomes and then again at output level; we have kept it in one place *only* under Component 3.
- Although the order of presentation may have changed, *all* indicators of the latest PIR (2014) do appear in Box 4, so we can say that we have not omitted any results reported in the subsequent sections.

Objective; outcomes and outputs	Indicators		
 Project objective and goal Reduced GHG emissions from use of CSH systems for low and medium temperature process heat; Increased use and promotion of CSH systems for low and medium temperature process heat applications 	 A. Cumulative CO2 emission reduced from start of project to End-Of-Project (EOP), (tCO2e) B. Cumulative installed area of CSH systems for process heat applications (m2) by EOP C. No. of companies that have installed CSH systems by EOP D. No. of CSH technologies available in India by EOP 		
Component 1 Technical capacity developme	nf		
1.1 Enhanced understanding of CSH technologies, applications and markets	E. No. of technology package suppliers that are available to market CSH technologies in India by EOP		
1.1.1 Developed technology application information packages and characterised technologies, applications, and markets	 Number of performance assessment reports of existing installations by yr 2 Number of technology assessment reports of CSH technologies by EOP Number of market assessment reports for CSH process heat applications by EOP Number of CSH technology application information packages developed by EOP 		
1.2 Adoption of standards and specifications for guidance of manufacturers and users for assurance of CSH quality, safety, and performance	 F. Indian CSH system components & equipment manufacturers a. Number (No.); and that comply with: b. BIS standards and specifications by EOP G. No. of Indian CSH system component & equipment manufacturers that entered into the internal CSH business (export of CSH components & equipment) by EOP 		
1.2.1 Developed CSH performance standards and technology specifications	 Documents of: a. performance measurement standard developed by yr 2 b. field performance monitoring guidelines developed by yr 2 No. of minimum performance norms developed by year 2 No. of technology specifications developed by EOP No. of performance standards and specifications t a. Taken up for consideration and adoption as draft national standards by BIS by year 4 b. Submitted to ISO as draft international standards by year 4 		
1.3 Adequately capable and operational testing laboratories for verification of	H. No. of accredited testing facilities for CSH components and equipment in India by year 3		
tosting aboratories for vermeation of	equipment in more by your 5		

Box 4 Overview of project outcomes and outputs with progress indicators

¹⁶ See "project design' on page 4 in the Inception report (May, 2012)

Object	ive; outcomes and outputs	Indicators
n	nanufacturer claims and guidance of	I. No. of Indian CSH system component & equipment manufacturers
C	CSH users to enable informed	that approached testing laboratories for certification by EOP
d	ecisions	J. No. of international CSH manufacturers that approached Indian
		testing laboratories for certification to enable their systems sale in
		Indian market by EOP
1.3.1 D	Developed CSH system components and	9. Number of reports on proof-of-concept testing carried out at SEC
	equipment testing facilities	for at least three technologies by yr 4
		10. Established national test facility by yr2
		11. Established regional test facility by yr3
Compo	onent 2: Awareness enhancement and o	
	trengthened technical capacity and	K. No. of trained participants of (test facilities) that are actively
a	wareness of stakeholders of CSH	involved in the development of the CSH technology development
s	ystems for industrial/ institutional	by EOP
р	rocess heat applications	L. No. of papers presented in conference that were used by policy
		makers in decision making on technology applications, in general,
		and CSH technology applications, in particular, by year 4
	Trained manufacturers/ vendors,	12. Training needs assessment completed by yr 2
	installers and CSH users	13. Training implemented:
		a. No. of training modules (including all the training material) on
		CSH technologies developed by yr 2
		b. No. of training courses on CSH technologies organized and
		conducted under the project by EOP
		c. Number of personnel trained in the training courses by EOP
		14. No. of personnel that received training on specific aspects of CSH
		technologies from study tour conducted under the project by yr 2
2.1.2	More trained technical consultants that	15. Training implemented:
	provide technical services to both CSH	a. No. of training courses on CSH technologies organized and
	system components & equipment	conducted under the project by EOP
	manufacturers and users	b. Number of trained technical consultants by EOP
0.1.0		
	Established and supported industry-	16. Number of Ph.D./M.Tech fellowships/research associates
	academic partnership through research	a. Supported by yr3
	programmes to build future capacities	b. Completed by yr3
		17. Number of institutions with fellowships supported
	Trained staff at SEC and staff at	18. Number of personnel trained in international training programmes
	regional testing centre	organized and conducted by yr 2
		19. National training:
		a. No. of programmes organised
0.1 -		b. No. of personnel trained
	Completed enhancement programmes	20. Conferences:
	for policy makers, academicians,	a. Number organised
	industries, financial institutions, etc. to	b. Number of participants by yr4
	facilitate replications	c. Number organised (international)
		d. Number of international participants by yr4
		21. No. of CSH system exhibitors in expos organized and held by yr 4
		22. Awareness programmes:
		a. No. of awareness programmes
		b. No. of participants
	Number of awareness programmes	23. Number of advertisements about CSH placed on print media under
	organized and conducted by EOP	the project by year 3
		24. Number of industrial clusters in which hoardings are displayed by
		voor 2
		year 3
	CSH technology platform and is operational	25. An officially established platform by yrl26. Number of meetings conducted by the Platform by EOP

Obj	ective; outcomes and outputs	Indicators
	•	27. No. of users that make use of the platform in that make use of the
		platform in addressing issues/problems
		a. CSH system users
		b. Manufacturers/suppliers/distributors
2.2	CSH Project deliverables facilitated	M. Cumulative no. of newsletters and magazines
	and/or influenced the widespread	a. Newsletters
	replication of CSH technology	b. Magazines
	applications in India	N. Website operational
	applications in mula	a. Established by yr1
		b. No. of users starting yr1
		O. No. of printed and disseminated compendium by EOP
2.2.1	5	28. Audio-visual capsules uploaded and accessible form project
	outputs, case studies, best practices	website by yr3
	and lessons learnt disseminated to	a. Number
	ensure larger replication	b. No. of users by EOP
		29. No. of brochures on CSH technology applications produced and
		disseminated by EOP
~		
	ponent 3: Pilot demonstration of CSH teo	
3.1	Increased number of commercial and	P. Number of projects planned and implemented
	near- commercial CSH technologies	a. Demonstration projects
	for diversity of applications	b. Replication projects
		c. Number of technology packages used
		Q. No. of implemented demo and replication projects whose
		performance data is as per feasibility study by EOP
		R. No. of implemented demo projects, whose
		a. Operational and energy performances are at least the same or
		better than as per design by EOP;
		b. whose financial and economic performances are at least the
		same or better than as per design by EOP
3.1.1	Completed feasibility studies for	30. Number of completed feasibility studies that were supported by the
	demonstration and replication projects	project by year 4
	of various CSH technology	1 5 5 5
	applications	
3.1.2	**	31. Number of completed DPRs for demonstrations (for projects > 750
	(DPRs) for demonstration projects	m^2) that were funded and implemented under the project by year 4
3.1.3		32. Number of CSH technology application demonstration projects
5.1	demonstration projects in at least 5	supported by EOP
	1 0	supported by EOI
21	sectors	22. Cumulative number of performance maniforing reports by EOD
3.1.4		33. Cumulative number of performance monitoring reports by EOP
	analysis, and evaluation of	
2.2	demonstration projects	
3.2	Improved technical and economic	34. No. of replication and other CSH technology application project
	performance of commercial and near-	supported by the Project
	commercial CSH technologies in an	
0.0	increased diversity of applications	
3.2.1	Documentation of results of	34. No. of CSH technology projects included in the project database by
	demonstration and replication projects	EOP
		35. Number of demonstration project profiles prepared by EOP
		36. No. of performance monitoring reports of demo and replication
3.2.2	2 Completed performance monitoring,	
3.2.2	analysis and overall evaluation for	projects completed by EOP;
3.2.2	1 1 0	

Component 4: Sustainable financial approach in the adoption of CSH technologies and applications in India

Objective; outcomes and outputs	Indicators
4.1 Enhanced understanding of the financial viability of CSH technologies and measures to mitigate investment	 S. No. of potential and feasible financial options for the application of CSH technologies T. No. of banks/financial institutions that agreed to finance CSH projects by EOP U. Number of projects developed in ESCO mode
4.1.1 Documented financial viability of CSH technologies, applications, and mitigation approaches of investment risks	 38. No. of completed financial viability analyses of CSH technologies and applications by year 3 39. Analysis of alternative financial options by year 3
4.2 Promulgation of favourable financial policies that promote increased use and promotion of CSH for low and medium temperature process heat applications	V. No. of implemented CSH projects that benefitted from the enforced policy and regulatory regimes on CSH technology applications by EOP
4.2.1 Formulated recommendations for financial and promotional policies and strategies for adoption by Government of India	40. No. of policy studies completed for inputs in the formulation of policies supportive of CSH system and application projects by yr3

4.2.2 Stakeholder involvement and links with other past or ongoing initiatives; replication

MNRE has been supporting concentrating solar technology (CST) application in a small programme prior to the Project, which is meant to accelerate the efforts in India to apply CST in heat applications. The UNDP/GEF India CSH project has been fully integrated with the on-going MNRE programme on CSH and the Jawaharlal Nehru National Solar Mission (JNNSM) of Government of India.

As part of the project formulation and analysis energy audits in 11 sample units (in various industries) were carried out to have a better understanding on process heat requirements and the possible role of the various CST options. In addition, four case studies of CSH applications (about 70 at the time of writing the project document) were analysed. Thus, experiences and lessons from the implementation of CSH in India were taken into account. A range of stakeholders (from government ministries and agencies, research institutes and universities as well as CSH manufacturers and potential beneficiary industries) were consulted.

The replication approach is based on showcasing the various demonstration and replicated projects (about 90) of the Project as well as by promoting those CST that have not been commonly applied yet in India. With only a few CSH applications in the world, however, the Project is quite unique with hardly any lesson learned from abroad to be incorporated. In this sense, the project is of a pioneering nature. In fact, success in India for CSH could boost similar initiatives in other countries in the world.

4.2.3 Ratings

One review question is "If the project progress is not good, what changes could have been made (if any) to the project design in order to improve the achievement of the project's expected results during rest of the project implementation period". As will be discussed in Chapter 3, the project progress has been 'good', in fact with visible, results in its four components that range from marginally satisfactory to highly satisfactory. We conclude therefore that the design in terms of achievable results has been of sufficient quality The UNDP Midterm Review Guide (2014) does not mention that a rating needs to be given on project design, but if asked to do so we would provide a rating as satisfactory and we consider the project as highly relevant in the context of India's sustainable energy practices and planning.

5. FINDINGS: PROGRESS TOWARDS RESULTS

The results of the project include outcomes and outputs. Changes between the planned and actual results are described and explained as well as factors that may have affected the achievement of the intended results.

Mid-term review questions (see Box 1)

- Review the logframe indicators against progress made towards the end-of-project targets using the Progress Towards Results Matrix, with progress indicators for outcomes/outputs, indicating baseline and target levels, as well as current level and/or reported in PIR linked with ratings for each outcome
- Results in terms of contribution to sustainable development benefits, as well as global environmental benefits (direct and indirect emission reduction); Compare and analyse the GEF Tracking Tool at the Baseline with the one completed right before the Midterm Review
- Description of status and issues with employing Concentrating Solar Heat (CSH) systems for low-medium temperature applications in selected sectors

5.1 Attainment of outcomes and outputs

The Boxes 5, 7, 9 and 13 provide an overview of results (outcomes and outputs) against a set of outcome and output indicators as listed in Box 4. The column with 'results reported' is based on the latest 2014 PIR, supplemented by other progress reporting and info from discussions with the project team and stakeholders during the MTR mission. An overview of <u>ratings of progress towards</u> results for each component is given in Box 17 in Section 8.1¹⁷. It should be noted that the 'mid-term value' is based on values given in the 2014 PIR (June), although updated for the period July-Dec 2014 where applicable with the latest data provided by the PMU.

Out	comes and outputs	Indicators	Base- line target	Mid- term value	EOP target
Con	ponent 1 Technical cap	pacity development			
1.1	Enhanced understanding of CSH technologies, applications and markets	E. No. of technology package suppliers that are available to market CSH technologies in India by EOP	10	20	22
1.1.1	Developed technology	1. Number of performance assessment reports of existing installations by yr 2	10	19	22
	application information packages	2. Number of technology assessment reports of CSH technologies by EOP	0	2	2
	and characterised technologies,	3. Number of market assessment reports for CSH process heat applications by EOP	0	-	2
	applications, and markets	4. Number of CSH technology application information packages developed by EOP	0	5	10

Box 5 Progress towards results, Component 1

¹⁷ The tables in Boxes 5, 7, 9 and 13 are modified versions of the Table proposed in the ToR (see Annex A, page 58, i.e. made simpler to keep the tables readable in the view of the large list of indicators. The table has also been split up in four tables (one per outcome) for this reason. On 'targets achieved', we rather present per outcome than individual targets. On average, indicators in Components 1 and 2 have been achieved (or over-achieved), in Component 2 on target to be achieved and Component 4 not on target yet. This is reflected in our rating as HS for Components 1, 2 and 3 and MS for Component 4 (see Chapter 8).

Outo	comes and outputs	Indicators	Base- line target	Mid- term value	EOP target
1.2	Adoption of standards and specifications for guidance of manufacturers and users for assurance of CSH quality, safety, and performance	 F. Indian CSH system components & equipment manufacturers a. Number (No.); and that comply with: b. BIS standards and specifications by EOP G. No. of Indian CSH system component & equipment manufacturers that entered into the internal CSH business (export of CSH components & equipment) by EOP 	10 0 0	19 - 2	22 22 7
1.2.1		 Documents of: a. performance measurement standard developed by yr 2 b. field performance monitoring guidelines developed by yr 2 No. of minimum performance norms developed by year 2 No. of technology specifications developed by EOP No. of performance standards and specifications: a. Taken up for consideration and adoption as draft national standards by BIS by year 4 b. Submitted to ISO as draft international standards by year 4 	0 0 0 0 0	1 1 1 0 0 0	1 1 5 1
1.3	Adequately capable and operational testing laboratories for verification of manufacturer claims and guidance of CSH users to enable informed decisions	 H. No. of accredited testing facilities for CSH components and equipment in India by year 3 I. No. of Indian CSH system component & equipment manufacturers that approached testing laboratories for certification by EOP J. No. of international CSH manufacturers that approached Indian testing laboratories for certification to enable their systems sale in Indian market by EOP 	0 0 0	2 5	2 20 5
1.3.1	Developed CSH system components and equipment testing facilities	 9. Number of reports on proof-of-concept testing carried out at SEC for at least three technologies by yr 4 10. Established national test facility by yr2 11. Established regional test facility by yr3 	0 0 0	- 1 1	3 1 1

Outcomes 1.1 and 1.2

As by November 2014, there were 20 active concentrating solar technology (CST) manufacturers, up from about 10 in 2011. These follow technical specifications as laid down by MNRE, but BIS standards are yet to be defined for CSH components (Indicators E and F). It should be mentioned that two manufacturers from India are also doing business abroad (Indicator G). A list of manufacturers is given in Annex E.

To know the status and issues in existing CST installations, a field evaluation study of existing installations on CSTs based systems for community cooking, process heat and cooling applications" was carried out by Apitco Ltd. of 96 installations in various sectors all over India. A *Compendium* (Dec 2013) describes each installation with the necessary details¹⁸. Nearly 80% of them were fully functional, the remaining either non-functional or partially functioning. For the non-functional systems, a decision was taken by the Project to provide partial support to make them functional (see Box 11).

¹⁸ The profile provides information on plant location, type of technology, configuration, supplier, application, year of installation, system & application details, timing of operation, steam generation, operating temperature & pressure, quantity & type of fuel saved, status of equipment, functionality & key issues, operation & maintenance issues, beneficiary perception, financials in details with cost of system payback & IRR with and without MNRE subsidy, overall system performance, and beneficiary's contacts.

Regarding Indicators E, F, 1 and 2, the project commissioned EcoAxis Systems Pvt Ltd (based in Pune) for: :

- Technology assessment and performance evaluation of CST for cooking, process heat and cooling applications. The results are laid down in the following reports:
 - o Assessment of facilities of CST manufacturing (May 2014)
 - Assessment of Concentrating Solar Technologies for Off-Grid Applications (Oct. 2014)
 - o Assessment of Technologies for Off-Grid Applications in the International Market (Oct. 2014)
- Procurement and installation of equipment/instruments for on-line performance monitoring of selected Concentrating Solar Technology (CST) with the following reports:
 - o Status of instrumentation at 15 CST installations (May 2014)
 - o Online performance monitoring at 15 sites of different CSTs (Oct 2014).

The reports describe the characteristics, performance, potential application and advantages and disadvantages of six CSTs (see Annex D), a) Fixed focus elliptical dish (Scheffler), b) Parabolic through collector, c) Fresnel reflector-based dish (known as ARUN dish), d) Paraboloid dish, e) Linear Fresnel reflector concentrator; and g) Non-imaging concentrator.

About 20 sites were visited and in the end 15 were selected for assessment and online monitoring. Assessment parameters included completeness and correctness of the CST installation, component condition, instruments and control, operating practices and operator's/users' efforts. Equipment/instruments have been installed at all the sites and online performance monitoring has been carried out since December 2013 onwards. Data as regards to solar radiation, inlet & outlet temperature, pressure, fluid flow, etc. can be observed online at any time of the day for each system. Assessment studies of various sectors (Indicator 3) will be carried out in 2015.

Regarding the technology supply side, i.e. the manufacturers, 15 of them were visited and assessed, looking at management systems, quality control system, manufacturing facilities, product development capability, staff qualifications and resources allocated.

To make CS technologies more widely known, EcoAxis developed information packages for six different CSTs (see Annex D for a description of these technologies), which are available at www.cshindia.in/technology.html (Indicator 4):

	Beneficiary	Application	Technology
1	Bosch Ltd ,Bangalore	Cooking	Fixed Focus Elliptical
2	JSS Suttur (Boys hostel), Bangalore	-	(Scheffler)
3	Shantikunj, Haridwar		
4	MNIT (Hostel), Jaipur		
5	Bhashyam Public School, Guntur		
6	Ramrao Adik Public School, Shrirampur, Ahmednagar		
7	Mahindra Vehicle, Chakan	Cooling	
8	Gajraj Drycleaners , Ahmednagar	Process heat	
9	Purple Creation, Baramati		
10	B S Pulp & paper mill, Ludhiana		
11	Ramkrishna Mission, Chennai	Cooking	Fresnel Reflector Paraboloid dish
12	Turbo Energy, Mahabalipuram (TN), Mysore	Cooling	(ARUN)
13	Mahanand Dairy,Latur	Process heat	
14	SKF Technology, Mysore	Process heat	Parabolic Trough Collector (PTC)
15	ITC Bangalore		Non-Imaging Collector (NIC)

Box 6 List of 15 sites for online monitoring of CST

A document titled '*Development of performance measuring standards, test procedures & test protocols for CSTs*' was developed by the consortium of GK Energy, Thermax, Akson Solar and Pune University in Oct 2013. It covers performance measurements for thermic fluid systems; high/pressure hot water systems and steam systems, and also provides a set of testing guidelines to be followed in the field for mobile test facilities (Indicator 5). Standards for testing and performance evaluations have been developed by Pune University and handed over to BIS for formalization.

Suggested minimum performance norms were developed and uploaded on the www.mnre.gov.in website¹⁹ for the information and action by manufacturers and beneficiaries. The minimum specifications will be further revised by an Expert Group during the reporting period. Regarding technology (materials) specifications (Indicator 7), draft Terms of Reference have been developed to identify technology specifications for the six different CST technologies. These will be verified with the actual performance data collected from the two test centres (see Outcome 1.3). Thus minimum performance norms and specifications will be updated and in the future might be taken up for consideration and adoption as draft national standards by BIS (see Indicator 8).

Outcome 1.3

In two locations immobile test centres were established in the period June-August 2014:

- One is at MNRE's National Institute of Solar Energy NISE (formerly called Solar Energy Centre) at Gurgaon. It will be used as a national centre for testing steam/pressurized hot water CST systems (see photo);
- The Centre for Energy Studies, University of Pune, is hosting a regional testing facility covering the western region for testing steam/pressurized water and thermic fluid systems. The

justification for the choice of Pune has been that is becoming one of the major hubs for solar thermal

¹⁹ mnre.gov.in/schemes/decentralized-systems/solar-systems/solar-cooking-steam-generating-systems/ The draft benchmarks were defined during the project and discussed in a working committee as part of the Project

systems including a sizeable number of CSH systems installed in that region and manufacturers in the Pune-Mumbai region.

In addition there is one mobile test facility available per centre (Indicators H, 10 and 11). The test centre have only recently been established, so it is too early to assess their functioning. To date, around five manufacturers have got their product tested from test centres (Indicator I).

An assignment on 'Collection & Compilation of performance data on CST based systems through remote monitoring' has been recently awarded to a consulting firm APITCO (based in Hyderabad) and is expected to provide data for 80 systems by end of the project (Indicator 9).

Box 7	Progress	towards	results,	Component	2
-------	----------	---------	----------	-----------	---

Outcomes and outputs Indicators		Base- line target	Mid- term value	EOP target
Component 2: Awareness enha	ancement and capacity building			
2.1 Strengthened technical capacity and awareness of stakeholders of CSH	K. No. of trained participants of (test facilities) that are actively involved in the development of the CSH technology development by EOP	0	5	10
systems for industrial/ institutional process heat applications	L. No. of papers presented in conference that were used by policy makers in decision making on technology applications, in general, and CSH technology applications, in particular, by year 4	0	15	20
2.1.1 Trained manufacturers/ vendors, installers and	12. Training needs assessment completed by yr 213. Training implemented:	0	1	1
CSH users	a. No. of training modules (including all the training material) on CSH technologies developed by yr 2	0	6	3
	b. No. of training courses on CSH technologies organized and conducted under the project by EOPc. Number of personnel trained in the training courses by	0 0	12 300	15 300
	EOP 14. No. of personnel that received training on specific aspects of CSH technologies from study tour conducted under the project by yr 2	0	6	10
2.1.2 More trained technical consultants that provide technical services to	15. Training implemented:a. No. of training courses on CSH technologies organized and conducted under the project by EOP	0	-	9
both CSH system components & equipment manufacturers and users	b. Number of trained technical consultants by EOP	0	-	100
2.1.3 Established and supported industry-	16. Number of Ph.D./M.Tech fellowships/research associatesa. Supported by yr3	0	9	10
academic partnership through research programmes to build future capacities	b. Completed by yr317. Number of institutions with fellowships supported	0 0	-1	5 5
2.1.4 Trained staff at SEC (now NISE) and staff at regional testing centre	18. Number of personnel trained in international training programmes organized and conducted by yr 219. National training:	0	-	5
-	a. No. of programmes organisedb. No. of personnel trained	0 0	-	1 1

Outcomes and outputs	Indicators	Base- line target	Mid- term value	EOP target
2.1.5 Completed enhancemen	t 20. Conferences:			
programmes for policy	a. Number organized (national)	0	2	2
makers, academicians,	b. Number of participants by yr4	0	500	200
industries, financial	c. Number organized (international)	0	-	-
institutions, etc. to	d. Number of international participants by yr4	0	0	20
facilitate replications	21. No. of CSH system exhibitors in expos organized and held by yr 4	0	0	20
	22. Awareness programmes			
	a. No. of awareness programmes	0	40	12
	b. No. of participants	0	900	1600
2.1.6 Number of awareness programmes organized	23. Number of advertisements about CSH placed on print media under the project by year 3	0	5	5
and conducted by EOP	24. Number of industrial clusters in which hoardings are displayed by year 3	0	0	10
2.1.7 CSH technology	25. An officially established platform by yr1	0	1	1
platform and is	26. Number of meetings conducted by the Platform by EOP	0	2	8
operational	27. No. of users that make use of the platform in that make use of			
-	the platform in addressing issues/problems			
	a. CSH system users	0	?	100
	b. Manufacturers/suppliers/distributors	0	10	15
2.2 CSH Project	M. Cumulative no. of newsletters and magazines			
deliverables facilitated		0	22	48
and/or influenced the	b. Magazines	0	6	18
widespread replication	N. Website operational			
of CSH technology	a. Established by yr1	0	1	1
applications in India	b. No. of users starting yr1	0	4400	2000
	O. No. of printed and disseminated compendium by EOP	0	800	1000
2.2.1 Documentations on the Project outputs, case	28. Audio-visual capsules uploaded and accessible form project website by yr3			
studies, best practices	a. Number	0	13	14
and lessons learnt	b. No. of users by EO	0	n.a.	2000
disseminated to ensure larger replication	29. No. of brochures on CSH technology applications produced and disseminated by EOP	0	18	90

Outcome 2.1

On capacity strengthening, a training requirement assessment was carried out by PMU and MNRE (Indicator 12). The consulting firm Anthropower Ltd was hired to:

- Develop training Manuals for Operation & Maintenance for 6 different CSH technologies in Hindi and English languages. The Manuals act as a source of reference for trainers and site engineers and will help to the dissemination of standard best practices for operation and maintenance. The six manuals together contain roughly 250 pages of original technical writing content and more than 50 original visuals and diagrams (the manuals can be downloaded from www.cashindia.in).
- Organize training programmes on Operation & Maintenance of CSH systems. Training materials have been organized and 12 trainings (of 3-day duration) were held in 12 states. A total of about 300 people participated in the training programmes conducted, most of them were students from ITIs (industrial training institutes). The trainings topics included: CST basics, CST technologies; CST operation; and maintenance& troubleshooting.

Two M.Tech fellows were awarded a fellowship to work on 'Performance assessment of data generated through online monitoring systems, data analysis & performance mapping of existing CSH technology' at the National Institute of Solar Energy (NISE) at Gurgaon. In addition, seven students have been working on their

M.Tech degree at NISE in a relevant area of CSH technology. It should be mentioned that no financial support is provided by the Project as they got fellowships from their respective institutions (Indicators 16 and 17).

Photos: Final Project Report (Anthropower, Nov 2014)

Left: 13-15 May, ITI, Indore (Madhya Pradesh). Centre: 19-21 June, MNIT, Jaipur (Rajasthan). Right: 4-6 Feb 2014, Muni Seva Ashram, Goraj (Gujarat)

Regarding Output 2.1.4, a national training programme on 'online performance monitoring of CSH systems is planned for 2015. The Brahakumaris Ashram, Mount Abu has been identified as training cum awareness centre for CSH. Their mandate includes organization of 9 programmes over the remaining project period (Indicator 15).

On indicator 13, the training has not been implemented yet. Apparently, there are some discussions discussion between manufacturers and consultants on training content, choice of technology, which have been reasons for delay. Also, we can observe that a series of trainings at one point in time may not be enough, as refresher courses may be needed. In the Section on "recommendations" we suggest, having reached midpoint in project implementation, to refresh the stocktaking of training needs (especially as more systems of different CSTs will get installed over 2015-16) and adapt, expand and extend training and short courses in accordance with the findings of this stocktaking, for engineers, consultants and ESCOs and updating the role of institutes such as NISE, Pune University and Mount Abu as well training consultants

On conferences, workshops, meetings and awareness programs, the following is reported:

- Two national conferences/workshops were conducted; first the project's Inception workshop (in May 2012) and a second National workshop in Dec 2013. Over 500 stakeholders from various parts of the country participated in the National workshops organized. The participants included representatives from state nodal agencies, manufacturers, experts, relevant ministry and MNRE officials, UNDP and others (Indicator 20). A total of 15 presentations were made at these conferences (Indicator L);
- A total of 40 awareness programmes were organized to create awareness amongst stakeholders and to entice potential investors to generate expression of interest in CSH projects (Indicator 22);
- A total of 5 advertisements have been placed in national dailies²⁰ with information on the benefits of CSH, schemes under the project and key contact details (Indicator 23);
- Meetings of CST manufacturers and experts with MNRE (in January and April 2014)

A CSH Technology Platform was formed (referred to as CSTEAM) in 2014. Up to now, only two CSTEAM meetings have been held., in which about 10 manufacturers participated (Indicators 25-27). The functioning of CSTEAM is hampered by the fact that participating manufacturers at times have different interest and want to promote their specific technology. Admitting that this manufacturers' association has just been set up, it may be too early to tell, but so far it is not clear to the Evaluators what the role of CSTEAM will be in practice and what is will or should contribute in addition to the existing organizations, such as STFI. *Outcome 2.2*

²⁰ Such as HIndustan Times, Economic Times and The Hindu

The project website <u>www.cshindia.in</u> was officially launched in May 2014. It has uploaded information on the project and technology related information such as installation support, case studies, project activities, list of manufacturers, reports, FAQ etc. The counter of the website gives the number of about 4,400 viewers by early January 2015.

A total of 18 brochures on CST and applications have been developed by a number of organizations, namely

Box 8 CSH India project website

EcoAxis (as mentioned before; see Indicator 4) as well as PwC (Oct 2013; 4 info packages), WISE (World Institute of Sustainable Energy) and Ajay Chandhak (PRINCE, Suman Foundation). The brochures showcase the use of CSH systems in various sectors such as dairy, laundry, industries, space cooling and community and institutional cooking. The studies can be found at www.cshindia.in/case%20studies.html.

The case studies presented are:

Technology and application	Location
Process heat	
ARUN dish for washing application	Mahindra Vehicle Manufacturers, Chakan, Pune
Scheffler dish for steam pressing	Purple Creation, Baramati, Pune
Non-imaging concentrator for boiler feed water pre-heating	ITC factory, Bangalore
Scheffler dish for steam for dry cleaning	Gajraj Drycleaenres, Ahmednagar
Parabolic through for phosphating process	SKF Technologies, Mysore
Cooling	
Solar Concentrators installed for air cooling	CSM Hospital, Thane, Maharashtra
Scheffler dish for cooling and LPG vaporisation	Mahindra Vehicle Manufacturers, Chakan, Pune
Cooking	
Scheffler solar concentrators for community cooking	JNV school at Leh, Ladakh
Scheffler CST for steam cooking	Temple at Shirdi, Ahmednagar
ARUN solar concentrator for community cooking	Akshardham Temple, New Delhi
Scheffler solar concentrators for community cooking	SRM University
Scheffler solar concentrator for community cooking	SV School, Vankuva, Muna Sevi Ashram

In addition the *Compendium* on existing CSH installations (2013, by APITCO; see Outcome 1.1) was put on the website. Over 800 copies of above brochures and document were printed and provided to various stakeholders (including participants of 2013 national workshop).

A total of 13 video capsules have been developed on various CSH sites, of which some have been uploaded on CSH website <u>www.cshindia.in</u> (and we can assume that a part of the website's visitors have had a look at the videos). The audio-visual capsules were also shown in all of the 31 awareness workshops and the two national workshops on CSH.

On recurrent and other written materials, the Project has supported the publication of:

- *Insoltherm Times*, a monthly newsletter available at <u>www.insolthermtimes.in</u>. The newsletter has a subscriber base of 4,000 and is expected to reach 11,000 people by e-mail (there is no hardcopy version);
- *Sun Focus*, on a quarterly basis. The six issues released so far can be found at the MNRE website and <u>www.cshindia.in;</u>

InSolTherm Times is published by the the STFI (Solar Thermal Federation of India, <u>www.stfi.in</u>). STFI also operates a toll-free helpline (1800 233 477). To create awareness on the helpline, about 4 million SMS were sent. The Helpline was initiated under the UNDP Solar Water Heater Project (which ended in Dec 2012) and now answers questions on solar thermal plat-plate (solar water heaters), concentrated solar and solar PV.

Box 9	Progress	towards	results,	Component 3
-------	----------	---------	----------	--------------------

Outc	omes and outputs	Indicators	Base- line target	Mid- term value	EOP target
Com	ponent 3: Pilot demonstration	n of CSH technologies for various applications			
	Increased number of commercial and near- commercial CSH	P. Number of projects planned and implementeda. Demonstration projectsb. Replication projects	0	23 30	30 60
	technologies for diversity of applications	 c. Number of technology packages used Q. No. of implemented demo and replication projects whose performance data is as per feasibility study by EOP R. No. of implemented demo projects, whose 	0	5	7 90
		a. Operational and energy performances are at least the same or better than as per design by EOP;	0	-	15
		b. whose financial and economic performances are at least the same or better than as per design by EOP	0	-	15
3.1.1	Completed feasibility studies for demonstration and replication projects of various CSH technology applications	30. Number of completed feasibility studies that were supported by the project by year 4	0	41	90
3.1.2	Completed Detailed Project Reports (DPRs) for demonstration projects	31. Number of completed DPRs for demonstrations (for projects > 750 m ²) that were funded and implemented under the project by year 4	0	2	30 (?)
3.1.3	Developed and commissioned demonstration projects in at least 5 sectors	32. Number of CSH technology application demonstration projects supported 1 by EOP	0	23	30
3.1.4	Results of the performance monitoring, analysis, and evaluation of demonstration projects	33. Cumulative number of performance monitoring reports of demo projects by EOP	0	1	30
3.2	Improved technical and economic performance of commercial and near- commercial CSH technologies in an increased diversity of applications	34. No. of replication and other CSH technology application projects supported by the Project	0	30	60
3.2.1	Documentation of results of	35. No. of CSH technology projects included in the project	0	121	90
	demonstration and replication projects	database by EOP 36. Number of demonstration project profiles prepared by EOP	0	12	30
3.2.2		37. No. of performance monitoring reports of demo and replication projects completed by EOP;	0	1	90
	overall evaluation for demo and replication projects	38. Overall evaluations of demonstration and replication projects completed by EOP	0	-	2

Outcomes 3.1 and 3.2

The tables of Boxes 10 and 11 give an overview of the current status of demonstration and replication (and other) projects (Indicators P, 32 and 34), indicating the type of subsidy provided by MNRE and additional support by the UNDP/GEF project. Of the 53 project (16,373 m²) supported under CSH India, 20 were installed during 2013-2014 (of which 8 demonstration projects and 12 replication units).

Box 10 Description of selected UNDP/GEF Project-supported CSH applications

Type of CSH application	Technology	Application description	Size	Investment	Subsidy MNRE		Savings			Payback	time (yr)	Emission	reduction
			(m ²)	(INR lakh)	(INR lakh)	Fuel	Amount	Unit	INR (Lakh)	w/o subs	w subs	tCO ₂ /yr	tCO ₂ /m ² /yr
Process heat													
Gajraj DryCleaner, Gajraj	Scheffler	Steam for washing, drying of cloths	240	23.00	12.00	Diesel	6500	liter	2.6	8.8	4.2	18.2	0.076
Purple Creation, Baramati	Scheffler	Steam for washing garments	480	90.00	25.92	LPG	11,280	kg	7.90	11.4	8.1	33.8	0.071
Synthoken Labs Hyderabad	Scheffler	Processing of chemical compounds	450	124.78	27.00	diesel	60,000	liter	24.00	5.2	4.1	168.0	0.373
CSM Hosital, Thane	Scheffler	Cooling, hot water, sterilization	2502	400.00	124.00	Electricity	750,000	kWh	60.00	6.7	4.6	667.5	0.267
Hotel ITC Maurya, New Delhi	Scheffler, ARUN	Steam for laundry, cooking, heating	297	165.00	54.00	Natural gas	33,000	m³	33.33	12.0	3.3	59.2	0.199
Mahanad Dairy, Latur	ARUN	Hot water for milk pasteurization	160	51.70	32.76	Fuel oil	13,360	liter	7.35	7.0	2.6	39.3	0.246
Mahindra Vehicles, Chakan	ARUN	Steam for cleaning engine parts	169	39.00	10.14	Electricity	200,000	kWh	16.00	2.4	1.8	178.0	1.053
Salem Coop Milk Producers	ARUN	Milk pasteurization	338	101.00	20.28	Fuel oil	28,588	liter	15.72	6.4	5.1	84.2	0.249
SKF Technology, Mysore	PTC	Hot water for metal phosphating	256	70.55	13.85	Fuel oil	12,000	liter	6.60	10.7	8.6	35.3	0.138
Siddarth Surgicals, Valsad	PTC	Cleaning & bleaching of cotton	263	47.50	14.20	LPG	20,000	kg	14.00	3.4	2.4	60.0	0.228
ITC Bangalore	NIC	Processing tobacco leaves	680	140.00	24.48	Fuel oil	45,000	liter	24.75	5.7	4.7	132.5	0.195
ITC Pune	NIC	Processing tobacco leaves	442	79.52	15.91	Fuel oil	21,000	liter	11.55	6.9	5.5	61.8	0.140
Mahindra Vehicles, Nagpur	NIC	Hot water for cooling	442	88.41	15.91	Electricity	240,000	kWh	19.20	4.6	3.8	213.6	0.483
Cooling													
Mahindra Vehicles, Chakan	Scheffler	Chillers for cooling paint	1120	210.00	60.48	LPG	50,000	kg	35.00	6.0	4.3	150.0	0.134
Honeywell Technology, Hyderabad	PTC	Space cooling	821	213.41	44.28	Electricity	444,950	kWh	35.60	6.0	4.8	396.0	0.482
NPCIL, Power project, Kota	PTC	Space cooling	641	245.32	34.61	Electricity	625,000	kWh	50.00	4.9	4.2	556.3	0.868
Cooking													
Shirdi, Temple, Ahmednagar	Scheffler	Steam for cooking	1168	133.00		_	41,000	0	28.70			123.0	
		TOTALS	10469	2222.19	588.22	Energy	5,982	MWh	392.30	5.7	4.2	2976.8	0.284
				Prices:				CO2 co		Energy val			
Based on info provided by PwC	brochures CST in I	ndustrial Sector (Oct 2013),		LPG	70	INR/kg	3.0	kgCO ₂ /	/kg	46.1	MJ/kg		

	FILCES.			CO2 content	Lifeigy value
Based on info provided by PwC brochures CST in Industrial Sector (Oct 2013),	LPG	70	INR/kg	3.0 kgCO ₂ /kg	46.1 MJ/kg
case studies prepared by WISE and PMU data	Electricity	8	INR/kWh	0.9 kgCO2/kWh	
Payback periods are calculated using the following fuel prices:	Fuel oil	55	INR/liter	2.9 kgCO2/litre	36.4 MJ/litre
Emission factors taken fro IGES and IPCC reports	Diesel	40	INR/liter	2.8 kgCO ₂ /litre	34.9 MJ/litre
	Nat gas			1.8 kgCO ₂ /m ³	32.6 MJ/m ³

Projects	Number	Aperture area (m ²)	Subvention system
			 MNRE: Dish solar cookers & steam generating systems can receive the following capital subsidy (or 30% of project cost, whatever is less): INR 2100/m2 - Concentrators with manual tracking; INR 3600/m2 - Non-imaging concentrators; INR 5400/m2 - Concentrators with single-axis tracking; INR 6000/m2 - Concentrators with double axis-tracking
Demonstration projects - Process heat - Cooking - Cooling	23 19 2 2	11,847 8,321 2,064 1,462	 UNDP/GEF support for > 250 m² (or dual-axis moving focus CST > 150 m²): 15% of MNRE benchmark cost up to INR 7.5 million; for all CSTs (Scheffler if innovating and/or above 16 m²) with max up to 15,000 m² Support released (50%) on submission of bank guarantee (BG; in case of no BG after submission of DPR and performance data); balance 50% released based on performance data Activities supported: Feasibility study (<750 m²) or detailed project report (DPR; > 750 m²);
Replication and Other projects	30	4,695	Performance monitoring for 2 yrs; O&M of the system
- Process heat - Cooking	8 22	1,737 2,958	 <i>Replication projects:</i> UNDP/GEF support for > 250 m2 (or dual-axis moving focus CST > 150 m2): INR 500,000 for projects < 500 m² and INR 1 million > 500 m²; systems based on Scheffler dishes for providing regular performance and fuel data and O&M Support released (50%) on submission of bank guarantee (BG); balance 50% released based on performance data Activities supported: Providing performance and fuel data; O&M of the system <i>Other projects:</i> UNDP/GEF support for projects between 64 m² (Scheffler: 45 m²) and 150/250 m²: INR 200,000 for providing regular performance and fuel data and O&M Support released (50%) on submission of bank guarantee (BG; in case of no BG after submission of DPR and performance data); <i>ESCO mode projects:</i> UNDP/GEF: 10% of benchmark cost up to INR 1.5 million in addition to above projects if done in ESCO mode <i>Repair and innovation projects:</i> UNDP/GEF: 20% of sanctioned project cost to a maximum of INR 1.5 million for 5 years old systems subject to the condition that equal amount is spent by the beneficiary.

Box 11 Overview of CSH project supported under the UNDP/GEF CSH India project

Box 12 Examples of demonstration projects supported

	(F Technologies (P) Ltd (Bearings & Lubricating solution Ma			ITC, Pune (Cigarette manufacture	ers)
Technology	PTC each of 6.41 sq.m		Technology	Non Imaging Concentrators each of 3.41sg.m	-
System Size	256 Sq. m (40 nos. of PTCs)	the second s	System Size	442 sqm (130 nos. of NICs)	All Parts
Application Manufacturer	Metal Phosphating Thermax , Pune	and the second second	Application	Processing of tobacco leaves connected to furnace oil boiler	-
Sanction Date	MNRE : 13-09-2012	the second s	Manufacturer	Thermax , Pune	
	UNDP : 31-03-2014	The state of the s	Sanction Date	MNRE : 04-03-2014 UNDP : 31-03-2014	the test
Installation Date	January 2013	T AUX	Installation Date	May 2014	MO TON
Project Cost & Support	Rs. 70.55 Lakh; MNRE : 13.85 Lakh; UNDP : 3.50 Lakh		Project Cost	79.52 Lakhs; MNRE :15.91 Lakhs; UNDP : 7.95 Lakhs	
Remarks	System connected to Diesel Fired boiler generates pressurized hot water at 95c for heating chemical in a tank through coils for phosphating of metal bearings/ nuts,		Remarks	Pre heating of boiler feed water at 95 c. Steam generated from boiler being used for flavouring of tobacco leaves	
Savings & CO2 reduction	12000 Litres of diesel saved in one year with 32.4 Tones of CO2 abatement.		Savings & CO2 reduction	Expected to save 21,000 litres of fuel oil in a year with 63 Tones of CO2 abatement	and the

Technology	Parabolic Trough of 28.2 sqm
System Size	263 sqm (9 nos. of PTCs)
Application	Cleaning & bleaching of cotton
Manufacturer	Energy Guru (Leveragenet Solutions Pvt. Ltd.), Pune
Sanction Date	MNRE : 04-03-2014 UNDP : 04-04-2014
Installation Date	July2014
Project Cost	47.50 Lakhs ;MNRE: 14.20 Lakhs ; UNDP : 7.13 Lakhs
Remarks	Pressurized hot water at 110 c generated for cleaning & bleaching of cotton in vertical kier connected to LPG burner. New type of PTC installed using 3M film on trough & cost effective tracking arrangement
Savings & CO2 reduction	Expected to save approx. 20,000Kgs of LPG in one year with 46 Tones of CO2 emission.

Honeywell Technology Solutions, Hyderabad (Automation & Control Systems Industry)

Technology	Parabolic Trough each of 6.41sqm	And in the second secon
Size of the System	821 sqm (128 nos. PTC)	
Application	Space cooling (100 TR triple effect VAM)	
Manufacturer	Thermax , Pune	ALL BALL
Sanction Date	MNRE : 11-02-2013 UNDP-GEF : 26-03-2014	
Installation Date	May 2013	A La Company
Project Cost	213.41 Lakhs ; MNRE : 44.28 Lakhs ; UNDP: 22.50 Lakhs	
Remarks	Integrated with electrically operated existing chillers. Pressurised hot water at 165 c and 17 bor is supplied to VAM to generate chilled water at 7 c which further cools air using fan coils.	
Savings & CO2 reduction	44,495 units of electricity saved in a year with 32 tonnes of CO2 abatement	

Mahindra and Mahindra, Nagpur (Automobile-Tractor Factory)

Technology	Non Imaging Concentrators each of 3.41sq.m
System Size	442 sq. m (130 nos. of NICs) connected to the existing system of electrical heaters
Application	Cleaning & degreasing of engine parts
Manufacturer	Thermax India Ltd.
Sanction Date	MNRE : 14-03-2013 UNDP-GEF : 26-03-2014
Installation Date	April 2013
Project Cost	88.41 Lakhs; MNRE : 15.91 Lakhs ; UNDP : 8.08 Lakh
Remarks	Pressurized hot water at 95 c being used for cleaning & degreasing of tractor engine parts before assembly.
Savings & CO2 reduction	Expected to save 24,000 units of electricity saved in one year with 17 tones of CO2 abatement

	Labs, manufact	Hyderabad	
robalaid Dishes each			

System Size	450 sq.m (5 nos. of dishes) connected to Diesel fired boiler.	
Application	Processing of chemical compounds for preparation of medicines	ALC: NO. P.
Manufacturer	Megawatt Solutions, Noida	
Sanction Date	MNRE : 04-03-2014 UNDP : 12-03-2014	
Installation Date	October 2014	
Project Cost	124.78 Lakhs ; MNRE: 27.00 Lakhs ; UNDP : 13.50 Lakhs	
Remarks	Hot water generated at 95 c through thermic fluid heated up to 180c by CST system being used for heating reactors for the purpose of chemical reactions.	
Savings & CO2 reduction	Expected to save 60K litres of Diesel in one year with 138 Tones of CO2 abatement	Jel.

Source: slides taken from Presentation by MNRE and PMU at 4th PSAC Meeting (January 2015)

The Project Document has a provision to support (in addition to the MNRE subvention) to up to 30 demonstration projects (and 60 replication projects), in which the project can provide 15% for demonstration units (increased from the 10% originally mentioned in the project documentation) and 5% to replication projects. During project implementation, additional support for projects operating in ESCO mode (see Component 4) was added, as well as support for non-functioning systems (see Outcome 1.1) for repair and putting these into operation. Details of the MNRE subsidy scheme and the additional support provided by the CSH India project is given in Box 11.

It was decided that feasibility reports would replace DPR for projects less than 750 m² (so the EOP value of Indicator 31 is not valid anymore); up to now only six projects have been $> 750 \text{ m}^2$ for which DPRs will be prepared. About 40 feasibility studies have been prepared. With most projects installed only in 2014, most performance reports of demonstration (and replication) projects need to come in (see Indicator 33); up to date one full report has been received (from SKF Mysore). Hence, as a full analysis needs to be done yet, no values can be given for Indicators Q and R.

A database has been prepared of all MNRE-sanctioned projects (including CSH that were installed before or outside the UNDP/GEF project) with the cumulative number reported as 121 (Indicator 35) A profile of 12 project-supported demo projects has been prepared by the PMU (Indicator 36). Information on selected projects is presented in the Boxes 10 and 12.

There has been a relative slowness in replications. One reason is that replication projects are using Scheffler technology, which is an older and less efficient technology. Newer technology are under Demonstration category. Increasingly beneficiaries are interested in these newer technologies. Once the aim of 15,000 m² of projects in the Demo category have been completed, newer technologies will also move into replication category and projects are likely to increase.

The website www.cashindia.in provides a list of 9 consultants/consultancy organizations that have been scrutinized by a technical Committee to assist in the preparation of feasibility studies and detailed project reports (DPRs) for projects to be prepared under the under UNDP-GEF project on CSH. Ten manufacturers have been accredited for off-grid and decentralised solar application for supplying, installation and distribution of CST systems (under the JN National Solar Mission). See www.cshindia.in.

Out	comes and outputs	Indicators	Base- line target	Mid- term value	EOP target
	iponent 4: Sustainable fi lications in India	nancial approach in the adoption of CSH technologies and			
4.1	Enhanced understanding of the	S. No. of potential and feasible financial options for the application of CSH technologies	0	2	2
	financial viability of CSH technologies and	T. No. of banks/financial institutions that agreed to finance CSH projects by EOP	0	15	20
	measures to mitigate investment	U. Number of projects developed in ESCO mode	0	-	5
4.1.1	Documented financial viability of	39. No. of completed financial viability analyses of CSH technologies and applications by year 3.	0	0	1
	CSH technologies, applications, and mitigation	40. Analysis of alternative financial options by year 3	0	0	1
	approaches of investment risks				

Outcomes and outputs	Indicators	Base- line target	Mid- term value	EOP target
4.2 Promulgation of favourable financial policies that promote increased use and promotion of CSH for low and medium temperature process heat applications	V. No. of implemented CSH projects that benefitted from the enforced policy and regulatory regimes on CSH technology applications by EOP	0	-	28
4.2.1 Formulated recommendations for financial and promotional policies and strategies for adoption by Government of India	41. No. of policy studies completed for inputs in the formulation of policies supportive of CSH system and application projects by yr 3	0	1	1

Outcomes 4.1 and 4.2

The Component 3 deals with pilot demonstration and replication projects that receive a 'business-as-usual' financial incentive from MNRE (and additional support from the CSH India Project). A second financial mode (see Indicator S) being developed with Project support is by involving an energy service company (ESCO).

In theory, the ESCO mode can be a win- win position both for user and the service provider. The user pays for energy provided and is sure that the system will be maintained after warranties expire, while continuing paying less than otherwise would have spent on conventional fuels. The ESCO will maintains the system as he has to get money from user and by doing so will continue to receive money even after recovering investment. In the current (subsidy only) model the manufacturer has no responsibility of performance after the warranty period which might create an issue for the users if considerable repairs and maintenance is needed.

On the other hand, few manufactures are willing to operate in ESCO mode; most will want to have full investment recovered immediately after commissioning of the system and not get into the burden of operation and maintenance, even if the long-term profit would be less. The market is too nascent for third-party companies to have an ESCO role. Hence, the additional subsidy provided for ESCO mode projects (see Box 11). A request for proposals was floated in 2014, but generated limited interest with about 8 projects in the pipeline and 5 projects under preparation (Indicator U). In the coming years 2015-16, the proof of the ESCO pudding will be in the eating, after which is should be carefully evaluated on 'viability and potential' towards the end of the project.

A study was carried out in 2012 by Citran Consulting (Bhubaneshwar) providing inputs for the formulation of policies and solar thermal programmes (Indicator 40). Other activities (associated with the progress Indicators 39, 40 and V) are still pending. One achievement of the Project has been the removal of import duty on solar mirrors (for non-grid CST systems); according to PMU this may reduce overall capital cost by about 5-7%.

5.2 Global environmental and other impacts

Box 10 provide data of seventeen CSH projects that are supported by the CSH India Project for which information was readily available to the Evaluator by means of published case studies and data given by the PMU. Since performance and fuel saving data in general is not (yet) available from them (both installed and yet to be installed), 'educated guesses' were made by the Evaluators on expected CO_2 emissions, based on estimates of fuel consumptions (see Box 10). The total area of these 17 CSH projects (of which data were made available to the Reviewers) is 10,469 m² that will generate annual greenhouse gas emission reduction of

2,977 tCO₂/year. This implies average CO₂ savings of 0.284 tCO₂/m²/year, slightly less than the assumed factor for CO₂ calculations in the Project Document (0.35 tCO₂/m²/year).

Project Document	MTR status					
 Direct emission reduction target by EOP: 45,000 m² of CSH systems installed in 90 establishments resulting in 315 lifetime ktCO₂ emission reduction (assuming an average emission factor of 0.35 tCO₂/m²/yr). Indirect emission reductions follow from: Bottom-up: using a 'replication factor' of 'three' gives GHG reduction attributable to the Project of 945 ktCO₂ Top-down: this looks at how the use of CSH systems will develop in a 10-year post-project period. Assuming the Project's 'causality factor' as 80% and the emission reduction 	Direct emission reduct 53 projects have been so remainder following in emission factors ²¹ of 0 reduction of 4,704 tCC corresponding energy so savings are 107,489 MV We have tried to make market data provided by intervention, the market all 53 CSH India-support and assumed to increase Project). Assuming cons 2026, this would imply above-mentioned emiss 2.7 million tCO ₂ for the estimates. So we const achievable, even be a co	sanctioned 2015) with 0.284 tCO ₂ / O ₂ /yr or lift abstitution Wh (equival e some 'gu y PMU and t has grown orted project e with 28% servatively an installed ion factors, e top-down clude that	a total app /m ² /year, t fetime GH is 5,374 M lent to 331 estimates' d own calc with 18% cts would b o over mid- that annua d CSH area this means approach the ProD	erture area (his implies G reductio Wh/yr or ec ,253 MWh on market ulations. Pa over mid-2 be installed) -2015 to Da l increase wa of 181,56 s lifetime en , slightly his	of $16,542$ n annual G n of $94,03$ quivalent li h). developm artly due to 2012 to Dev with 32% ec 2016 (en yould be 10 2 m ² by 20 mission red igher than	n ² . Assumin HG emissio 73 tCO ₂ . The fetime energy ent, based of the Project c 2013 and of by mid-201 md date of the 9% over 201 26. Using the luction of 1. the ProDoc
as $1,095$ ktCO ₂ , this means	Installed CSH	Mid	Dec	Mid	Dec	Dec
GHG reduction of 0.945 ktCO ₂		2012	2013	2015	2016	2026
	Total - number	85	160	253		
	Process heat & cooling		24	48		
	Cooking		136	205		
	Total - area (m2)	25,000	32,000	48,500	70,000	181,562
	Process heat & cooling Cooking		13,760 18,240	24,105 24,395		

Box 14 Project objective; global environmental impacts

Project objective and goal	Indicators	Base- line target	Mid- term value	EOP target
Reduced GHG emissions from use of CSH systems	A. Cumulative CO ₂ emission reduced from start of project to End-Of-Project (EOP), (ktCO ₂ e)	0	94.07 ²²	315
for low and medium temperature process heat;	B. Cumulative installed area of CSH systems for process heat applications (m2) by EOP	25,000	40,000 ²³	85,000
• Increased use and promotion of CSH systems for low and	C. No. of companies that have installed CSH systems by EOP	85	12022	175
medium temperature process heat applications	D. No. of CSH technologies available in India by EOP	2	6	6

²¹ See Box 10. Installed projects with 10,469 m² have energy savings (fuel and electricity) of 3,401 MWh (=39.93 TJ), emission reduction of 2.98 ktCO₂ per year (or 0.284 tCO₂/m²/yr)

 $^{^{22}}$ $\,$ 4,704 tCO_2/yr gives lifetime emission reduction of 94,073 ktCO_2 per year over a 20-year lifetime

²³ In India, project-supported and (own) estimate of market size, extrapolated from on info (Dec 2013 status) provided by PMU, as explained in the Table

6. FINDINGS: PROJECT IMPLEMENTATION

This Chapter describes the appropriateness and functioning of project management and administration, work planning and monitoring and evaluation. A second section, discusses relations with stakeholders and communications, while the Chapter ends with an overview of planned and realized budget expenditures and of co-financing.

Mid-term review questions (see Box 1)

- *Management:* appropriateness of the institutional arrangement and whether there was adequate commitment to the project? Review overall effectiveness of project management as outlined in the Project Document. Have changes been made and are they effective? Are responsibilities and reporting lines clear? Is decision- making transparent and undertaken in a timely manner? Recommend areas for improvement; Review the quality of execution of the Executing Agency/Implementing Partner(s) and recommend areas for improvement; Review the quality of support provided by the GEF Partner Agency (UNDP) and recommend areas for improvement
- *Work planning*: Review any delays in project start-up and implementation, identify the causes and examine if they have been resolved; Are work-planning processes results-based? If not, suggest ways to re-orientate work planning to focus on results?; Examine the use of the project's results framework/logframe as a management tool and review any changes made to it since project start.
- *Reporting:* Assess how adaptive management changes have been reported by the project management and shared with the Project Board; Assess how well the Project Team and partners undertake and fulfil GEF reporting requirements (i.e. how have they addressed poorly-rated PIRs, if applicable?); Assess how lessons derived from the adaptive management process have been documented, shared with key partners and internalized by partners. How does the APR/PIR process has been helping to monitor and evaluate the project implementation and achievement of results?
- *M&E:* Review the monitoring tools currently being used: Do they provide the necessary information? Do they involve key partners? Are they aligned or mainstreamed with national systems? Do they use existing information? Are they efficient? Are they cost-effective? Are additional tools required? How could they be made more participatory and inclusive?

6.1 Adaptive management and planning; monitoring & evaluation

The implementation arrangements are described in Section 3.4. The project has been implemented by MNRE, assuming the overall responsibility for the achievement of the project results as the Implementing Partner (GEF Local Executing Agency). UNDP has been providing overall management and guidance from its New Delhi Country Office and the Asia Pacific Regional Centre (APRC) in Bangkok, and has carried out for monitoring and evaluation functions as per UNDP and GEF guidelines.

A Project Management Unit (PMU) has been established to implement the project, headed by a full-time National Project Manager (NPM), responsible for implementing day-to-day activities in coordination with the Joint Secretary of MNRE, acting as National Project Director (NPD) for the project. Originally, two Committees namely Project Advisory & Project Steering Committees were proposed in the Project Document to be formed that should meet once in 6 months for making management decisions and to advice & guide to Project Management Unit (PMU). It was suggested at Project Inception to have one joint Committee, namely the Project Steering & Advisory Committee (PSAC). To provide guidance and supervision to the PMU at more regular time intervals, it was decided to set up a Project Executive Committee (PEC), meeting at least once every two months. The PEC has met 13 times so far and four PSAC meetings have been held. Annual work plans and budgets (AWPs, annual work plans) are discussed at these meetings.

The Project has encountered a number of issues in Component 3 (demo and replication projects) and implemented some adjustments to overcome the issue:

- The ProDoc originally proposed to focus in on CSH installations larger than 250 m². But as many beneficiaries manifested heating needs that would require installations less than this size, the issue was discussed and the minimum downsized to 90 m² and above (64 m² for Scheffler dishes);
- The cap on technical assistance support was increased from 10 to 15% with the limit enhanced from INR 30 lakh to 75 lakh;
- After a survey identified 23 out of 75 assessed sites to be non-functional (see Outcome 1.1), this was discussed in the PSC and it was felt necessary to provide funding for repair and renovation, introducing a separate category (see Box 10) under which assistance can be provided up to INR 15 lakhs for projects 5 years and older;

Feedback for adaptive management has come from the technical reports of the projects (in particular the assessments (technology, application, manufacturers) of Component 1 as well as monitoring and evaluation reporting that have been released in accordance with the Monitoring and evaluation plan, presented in the original project documentation:

- Quarterly progress reports (QPRs)
- The annual mid-year UNDP/GEF Project implementation reviews (PIRs)
- Minutes of meeting of the PEC and PASC meetings.

The source of information for these reports and meetings has enabled the periodic oversight by UNDP India staff, along with the UNDP Programme Manager and responsible management in MNRE. UNDP, MNRE and PMU staff have visited CSH systems (e.g. in Pune region, Mount Abu, Hyderabad), while the Project Manager (NPM) has visited test facilities abroad (in Germany, Feb 2014).

6.2 Stakeholder engagement and communications

Mid-term review questions (see Box 1)

- *Stakeholders:* Has the project developed and leveraged the necessary and appropriate partnerships with direct and tangential stakeholders? Do local and national government stakeholders support the objectives of the project? Do they continue to have an active role in project decision-making that supports efficient and effective project implementation? To what extent has stakeholder involvement and public awareness contributed to the progress towards achievement of project objectives?
- *Communications:* Review internal project communication with stakeholders: Is communication regular and effective? Are there key stakeholders left out of communication? Are there feedback mechanisms when communication is received? Does this communication with stakeholders contribute to their awareness of project outcomes and activities and investment in the sustainability of project results? Review external project communication: Are proper means of communication established or being established to express the project progress and intended impact to the public (is there a web presence, for example? Or did the project implement appropriate outreach and public awareness campaigns?)

There has been engagement from a wide spectrum of stakeholders. In fact, the joining of PSC and Advisory Committee into one joint PASC meetings has enabled a close interaction at the project policy-making and guidance level between government institutions (MNRE, line ministries, autonomous agencies, such as NISE), academia and private sector representatives, both manufacturers as well as industries using CSH systems. On the more implementation level, awareness programs and pilot trainings have been organised with CST manufacturers, industries and experts (see Outcome 2.1).

The various conferences and state-level meetings (the latter organised with the State Nodal Agencies) has enabled formal and informal interaction between national and local government agencies, experts, CST manufacturers, beneficiary industries, etc. The online monitoring at the 15 sites almost by definition implies an info exchange between Project, monitoring organisation, manufacturer (interested in its CST's performance) and company at which the CST is installed (interested in its performance and resulting fuel and monetary savings).

It is important to stress that stakeholders are engaged as for them the Project is not an isolated activity, but they see the Project as part of their operations and a useful opportunity in beefing up their efforts. For example, CST is promoted by MNRE as part of their overall programme on promoting solar energy under the National Solar Mission (see Chapter 3). The STFI (Solar Thermal Federation of India) has been working since 2010 on promoting solar thermal energy (flatbed as well as concentrating technology) by improving the interface with Government bodies, promoting product standards, collecting industrial data and communication and networking. For example, the InSoltherm Times is published regularly and STFI also operates a toll-free helpline for the general public on questions about solar energy. The project website itself, <u>www.cshindia.in</u> presents a wealth of info on status of technology and applications, contact addresses of institutions, manufacturers and consultants, case studies and potential MNRE support. As an example of engaging stakeholders, the around 40 awareness programmes organised by the Project (see Output 2.1.5; Indicator 22) not only created awareness but resulted in the commitments of investors of around 10,100 m² of CST collector area.

6.3 Budget and co-financing

Mid-term review questions (see Box 1)

• Examine the *financial management* of the project monitoring and evaluation budget. Are sufficient resources being allocated to monitoring and evaluation? Are these resources being allocated effectively?

The Project has a budget of USD 4.40 million to be utilised over 2012-2016. Box 15 provides an overview over the expenditures up to December 2014.

The disbursements largely reflect also the progress in the various Components:

- Many activities of Component 1 have been completed (e.g. technology assessment; setting up testing centres; install instrumentation for online monitoring), while some are under implementation (e.g. development of specifications for materials/components of various CSTs;
- Activities in Component 2 have been completed (e.g. development of training manuals and carrying out trainings; conducts awareness workshops), although the activity of development of Awareness-and-Training Centre on CSTs at Brahmakumaris, Mount Abu was delayed and has only recently been initiated (Dec 2014) so the corresponding expenditures have not been reflected yet;
- Regarding Component 3, most budget is available as grant to support demonstration, replication and other projects, as described in Box 11. Total committed support for the 53 projects is around USD 550,000. This will only be spent over time after the CSH proposals have been sanctioned, and as it is linked with the acceptance under the MNRE subsidy scheme and anyhow based on presentation of bank guarantees (BG) and of (online) performance data;
- Regarding Component 4, few expenditures have been made as various activities have not been undertaken yet; a call for proposals for ESCO mode was recently launched.

The total co-financing commitment for the Project was USD 19.35 million (see Box 16) on projects (see Component 3), which the PMU estimates as USD 7.7 million as equity contribution and USD 4.4 million to be made available to them in the form of soft loans. Up to now, IREDA has not provided loans to the Project-supported CSH initiatives yet.

		Expenditures (USD)			
	Planned	Total	2012	2013	2014
Technical capacity development	831,525	999,094	142	637,172	361,780
 Consultants and contracts 	554,925	843,296		606,545	236,751
- Equipment	175,000	125,004			125,004
- Grant		0			
- Supplies, rental, premises, misc	101,600	30,793	142	30,627	25
Awareness and capacity	1,248,180	322,977	17,156	191,523	114,298
 Consultants and contracts 	910,700	254,266		164,730	89,536
- Equipment		0			
- Grant	86,400	4,822			4,822
- Supplies, rental, premises, misc	251,080	63,888	17,156	26,793	19,940
Pilot demonstration	1,968,245	117,015	0	47,570	69,445
 Consultants and contracts 	586,745	56,886			56,886
- Equipment		0			
- Grant	1,380,000	9,600			9,600
- Supplies, rental, premises, misc	1,500	50,529		47,570	2,959
Sustainable financing	104,100	1,159	0	0	1,159
 Consultants and contracts 	101,100	77			77
- Equipment		0			
- Grant		0			
- Supplies, rental, premises, misc	3,000	1,082			1,082
Project management	247,950	184,783	16,908	98,956	68,918
- Consultants and contracts	190,450	161,745	15,169	84,775	61,801
- Equipment		0			
- Grant		0			
- Supplies, rental, premises, misc	57,500	23,038	1,739	14,181	7,117
Other expenditures			8,374	28,226	15,263
TOTAL	4,400,000	1,676,890	42,580	1,003,448	630,862

Box 15 GEF project budget and expenditures 2012-Dec 2014

Box 16 Overview of project financing status

GEF and co-financing	Planned	Realized
(million USD)		Dec 2014
GEF	4.40	1.68
MNRE (grant subsidy)	6.00	2.10
MNRE (in-kind)	1.35	0.65
Industries (cash)	6.00	12.10
Financial institutions	6.00	-
Total	23.75	16.53

Based on data and information provided by PMU

Cost effectiveness

We conclude that the cost effectiveness_of the Project has been 'satisfactory', based on the fact that Project expenditures achieved so far reflect achievements that (in general) follow the results framework's targets, as described in Chapter 5. If 'cost effectiveness' is defined as GEF budget spent per m² or per tCO₂ we observe that, halfway, 53 projects 16,500 m² have been (sanctioned to be) installed, as compared with the EOP target of 45,000 m² in 90 projects. The project has been lagging behind a bit with replication projects, but as more (larger) projects, it is possible that the target can be met. One can ask if the EOP target itself was realistically designed. However, since this CSH project is quite unique (there are no other or few CST capacity building activities), it is difficult to compare with other projects to see if the targets were realistically defined, but our 'guestimates' of Table 14 indicate these are realistic.

7. SUSTAINABILITY

Mid-term review questions (see Box 1)

- Comment on the Sustainability of the project in view of the resources committed by the UNDP- GEF in the long term; Commitment on the expected scenario of the project sustainability subsequent to the conclusion of the project:
 - Socioeconomic: Are there any social or political risks that may jeopardize sustainability of project outcomes? What is the risk that the level of stakeholder ownership (including ownership by governments and other key stakeholders) will be insufficient to allow for the project outcomes/benefits to be sustained? Do the various key stakeholders see that it is in their interest that the project benefits continue to flow? Is there sufficient public/stakeholder awareness in support of the long term objectives of the project? Are lessons learned being documented by the Project Team on a continual basis and shared/ transferred to appropriate parties who could learn from the project and potentially replicate and/or scale it in the future?
 - *Institutional:* Do the legal frameworks, policies, governance structures and processes pose risks that may jeopardize sustenance of project benefits?
 - *Technology:* Description of status and issues with employing Concentrating Solar Heat (CSH) systems for low-medium temperature applications in selected sectors;
 - *Financial:* What is the likelihood of financial and economic resources not being available once the GEF assistance ends (consider potential resources can be from multiple sources, such as the public and private sectors, income generating activities, and other funding that will be adequate financial resources for sustaining project's outcomes)?
 - Environmental: Are there any environmental risks that may jeopardize sustenance of project outcomes?

Box 17 gives an overview of risks mentioned in the UNDP Project Document, which are mentioned at various places in the document (see its section 8 of Part B; Annex A; and in the outer right column of the results framework in Table 34). This scattered presentation is something that the format of project document writing requires, but it makes for difficult reading and understanding of the relative importance of barriers and risks. In the following table (Box 16) we have regrouped "risks" according to the main sustainability categories of "technology", "socioeconomic", "financial" and "environmental" that the UNDP MTR manual suggests. Internal risks are project-inherent or can be largely controlled by the project management, while external risks are policy-economy-international

In fact, many risks are in way or another related to the "barriers" given in large detail in Table 11 of the ProDoc). One can argue that some of the "risks' the Project might face is basically being unable to lower corresponding "barriers" substantially, thus negatively affecting the likeliness of "sustainability" of the project's interventions²⁴. The critical "assumptions" then is that the "internal risks" (i.e. risks that can be mitigated or managed by Project management), and 'external risks' have a low incidence and/or impacts, in such a way that sustainability remains (moderately) likely. The quality of adaptive management (mentioned in Section 6.1) is determined by the mitigation response of Project management to these external and internal risk factors as these manifest themselves more intensely and/or more frequently than expected.

²⁴ For example, the barrier "limited availability of (semi-)skilled manpower in CSH industry" in table 11 of the ProDoc resurfaces in the list of risks in its section 8 as "shortage/unavailability of necessary experts to work in CSH research and industry". It is the project task to provide training in such a way that this barrier is substantially lowered under the assumption that manpower/experts has a willingness to be trained and that the trainings provided are sufficient to have a likely sustainability. Adaptive management implies that if during project implementation trainings would show not be sufficient, the project changes course by adding trainings or changing the scope or intensity of the training.

Box 17	Assessment	of risks to	project si	ustainability
--------	------------	-------------	------------	---------------

Risk	Assessment of status
Institutional (and political) risks	
 Failure to secure effective support from MNRE (due to changes in MNRE leadership and/or reduced focus on CSH vis-à-vis CSP or solar thermal technologies) and/or frequent shifting/transfer of expert government staff across agencies and departments leading to the loss of capacity that has already been built for this GEF CSH project; Support for and/or capacity to develop standards for CST systems is limited or unavailable 	 MNRE has been extending financial and R&D support for quite some time. The Jawaharlal Nehru National Solar Mission (JNNSM), under which support is being extended, is also part of the Climate Change Action Plan (NAPCC) Standards will be developed (as part of project activities or thereafter) once more data on performance in the project's monitoring activities becomes available. Standards have been developed for solar water heaters, while those for solar concentrating power are under way, so the capacity exits. The Standards Bureau (BIS) is involved and part of PSAC. For now, the likelihood of abrupt changes is considered minimal in terms of institutional support. <i>Institutional sustainability is likely</i>
Socioeconomic (and capacity risks)	
 The Indian renewable energy industry is growing at a very rapid pace and there exists strong competition to attract human resources. In the short run, this can directly affect project implementation (e.g. delays in encountering project staff or for; major escalation in the necessary remuneration rate for project staff or consultants placing pressure on project budgets). In the long run, there is a risk that the CSH field could lose (project-trained) human resources to the other renewable energy industries; Failure to obtain cooperation from manufacturers (Indian and foreign) as well as from existing and prospective users of CSH systems (sharing of info; accessibility for discussions; willingness to participate in events and trainings); limited interest of academia and service providers/consultants to participate; Failure to trigger a suitable positive response from manufacturers of solar concentrators (Indian and International) to expand the supply of CSH system types in India and to scale up manufacturing so that economies of scale effects lower CSH prices towards a point where simple paybacks are more attractive. As in the typical 'hen or the egg, who was first?' question, scaling up may not be obtained if not triggering a positive response from the Indian CSH user industries, which again is influenced by the cost of (and subvention available) of CSH systems (see below); 	 This risk exists, but in the project trainings several persons will be trained, so if transferred, would be replaced (not leading to any stoppage). As the CSH industry grows so will the grow the pool of people with expertise on CSH development and application; As part of the process of applying for MNRE's subsidy scheme, both manufacturers and users are already sharing basic information, although this will not be in the public domain. Also, various companies are participating in the performance monitoring at 15 sites and provided data for the Compendium (2013) and info packages on CST and heat applications in selected companies (see Outcomes 1.1/1.2 and 2.2). In meetings, awareness programs and conferences, in general a range of stakeholder participated; The project's results so far already indicate a more improved perception of business opportunities in the CSH area. The project is supporting about 53 demo and replication projects (of which 20 installed) out of the 90 targeted at project's end.
 Financial (and techno-economic) A dramatic slowdown in the Indian economy, rising interest rates as well as the international price of oil or large subsidies for oil products such as furnace oil for process heat applications in India, and/or a significant reduction in the price of electricity and and/or a major improvement in the reliability of electricity supply – hence significantly undermining the economics of CSH in India; 	• As mentioned, we do not consider likely that abrupt changes in the subsidy scheme will occur. A more important issue is that current MNRE CSH subsidy programme does not sufficiently distinguish between the performances of the different CSH technologies, and has been essentially developed for the Scheffler CSH technology, the most prevalent technology before

Risk	Assessment of status
 Demand is influenced by the costs of the systems with payback times between about 4-11 years. The demonstration and replication projects will be strongly reliant on the continued existence and accessibility of CSH subsidies from the MNRE solar support programme (that lower payback times to 3-8 years; see Table Box 10). This assumes that the subsidy scheme is not discontinued or drastically changed; CST remains limited to the two technologies currently employed (Scheffler and ARUN) that may not be suitable for all applications, depending on thermal output, heating fluid temperature, space available for the CSH system, etc. Banks do not really consider CSH for lending; an area that they are not familiar with or find too risky ort both 	 project initiation. We understand that the Project will look into the issue as part of Component 4. Apart from Scheffler technology (for institutional cooking), other technologies are being demonstrated and showcased for a range of applications (cooling, process heat) with, (see Boxes 10, 11 and 12); International price and currency exchange developments are outside the project's control and an external risk factor. However, investment decisions should be taken on a longer-term perspective rather than current fuel prices. Nonetheless, even without price fluctuations, the payback time on investment remains an issue with payback times typically between 4-8 years, even with subsidy. Companies generally will expect 2-3 years (or less) and consider CSH due to their corporate social responsibility (CSR) rather than out of financial motives. While technologically proven, CST in most applications is 'near-commercially' viable only. Out of 'social' or 'green' motives, larger companies may be interested. Smaller companies have the issue that, although CSH application may have a larger impact on their energy load than in larger ones, these are in general short of funds and find it difficult to invest in the absence of adequate loans with financial institutions generally being reluctant to provide loans for CSH

8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Overall results and summary of ratings

Mid-term review questions (see Box 1)

- Identify remaining barriers to achieving the project objective in the remainder of the project, and by reviewing the aspects of the project that have already been successful, identify ways in which the project can further expand these benefits;'
- A MTR Ratings & Achievement Summary Table will be provided, summarizing the ratings on a) results, b) implementation and adaptive management, 3) sustainability with a short description of the rating's justification

Box 18 provides a summary of the ratings for a) progress towards results, b) project implementation and adaptive management and c) sustainability. Although not strictly required, a rating for 'design and relevance' has been added

Main criteria	Rating	Explanation
Progress towards results	HS	See Chapter 5. The Project has progressed most significantly in Component 1 by
- Component 1	- HS	establishing two testing centres, mobile test stations and preparing a report on
- Component 2	- HS	protocols and test procedures. Monitoring of CSH installations at 15 sites is
- Component 3	- HS	ongoing in order to understand performance and in the end will provide input into
- Component 4	- MS	performance benchmarking. A baseline report on CSH installations was prepared
-		(Compendium) as well as information packages on CST available and showcasing
		in certain applications.
		On capacity building (Component 2), the Project has advanced in a highly
		satisfactory manner, by holding 40 awareness workshops in different States,
		advertisements in dailies, supporting the publications of regular magazines and
		newsletters, launching a dedicated website. Skills and knowledge has been
		enhanced by means of training workshops and publication of manuals.
		Under Component 3, the Project has supported feasibility studies and (where
		needed) detailed project reports and committed support for 53 demonstration and provide the state of 16,400 m ² of collector energy of which 20 hours
		replication projects (with a total of 16,400 m ² of collector area), of which 20 have been installed. Progress is slower than mid-term targets given in the ProDoc, but
		this can be attributed to external reasons (e.g. delays in sanctioning of subsidy
		requests by MNRE), while the Project budget available for project support will
		anyhow only appear in the 2015-16 budget sheets.
		Component 4 addresses financial barriers and this is where progress has been
		slowest. It can be mentioned that IREDA has concurred to finance CSH projects.
Design and relevance	- R	See Chapter 4. In India, a range of Indian organizations – from MNRE, academia,
C		institutions to commercial entrepreneurs - have done a considerable amount of the
		necessary groundwork in terms of technology development and market promotion
		for solar concentrators for process heat applications (CSH) for cooking, cooling
		and industrial processes. Supporting this nascent market of CSH has been the target
		of the project and it should be noted that, given the lack of real experience
		worldwide with CSH, the Project is supporting India in realizing a leap-frogging
		innovation.
		The project documentation we consider well-written, concise and encompassing
		the details needed, addressing the barriers and capacity strengthening needs and
		crafting these into an appropriate list of expected outcomes and outputs and

Box 18 Mid-term review ratings and achievements summary table

		activities (logframe), although the list of progress indicators in the logframe could
		have been improved
Implementation and	HS	See Chapter 5. In Components 1 and 2 the project has overachieved and in
adaptive management		Component 3 is advancing more or less as planned. Financially delivery (taking
- Management and	HS	into account the USD 500,000 committed to demo project support, but not booked
reporting; M&E	HS	yet as expenditure) follows the achievements in the Components as mentioned
- Stakeholder involvement	S	above. Where needed, the Project team has undertaken a number of adaptive
- Budget and co-finance		management measures in response to issues encountered. The Project works very
-		well with the various stakeholders, including local entities (state nodal agencies),
		institutes and academia (such as NISE and Pune University), CST manufacturers
		and their associations, consultant companies as well as beneficiaries (from various
		industrial sectors as well as non-profit).
Sustainability	ML	Supporting solar thermal (including CSTs) is part of the sustainable energy and
		climate change policies with formulated targets. The CSH sector shows a growing
		trend with more Indian manufacturers and more applications in various industrial
		subsector and more CSTs being installed (apart from the Scheffler dishes and
		ARUN). There is no indication that subsidies for CSH will be cut back on the short
		run, but of course long-run development is difficult to predict. The rating of ML is
		largely due to the fact that, even with subsidy many CSH applications will be near-
		commercial only for a long term. However, the idea is that as the market expands,
		economics of scale will eventually lead to a drop in CST prices, while financial
		institutions (other than IREDA) may have a more positive look at providing loans
		for CSH based on results evidenced by more and more installations.
Impact	L	Prior to project initiation, the focus of CSH in India was on smaller installations
_		for institutional cooking, using Scheffler technology mainly. The project is
		successfully demonstrating applications of other CSTs in a range of industrial
		sectors for various applications (apart from cooking, cooling and process heat)

HS: highly satisfactory, S: satisfactory, MS: marginally satisfactory, R: relevant, ML: moderately likely

In conclusion, we can conclude that the Project has been instrumental in lowering *barriers* to the more widespread application of the CSH:

- *Technology package barriers*, by supporting the development of various information packages (on each of the 6 CST technologies and by presenting case studies) as well as by making other knowledge products available by means of the CSH India website, newsletters, etc. Assessments of technology (field survey of 100 installations), of manufacturers' facilities and sectoral case studies have consolidated the baseline information available on the options and issues with CST application in a range of heat applications for various end uses (cooking, cooling, process heat). To remedy the barrier of credibility of actual performance of CSH systems, a process of systematic monitoring of the CSH applications has been initiated. For the first time in India, testing facilities (both mobile and immobile) have been set up for this purpose. Quantified performance data will yield valuable info for prospective CSH users (confidence) and to manufacturers (suggestions for product improvement) alike. BIS standards for testing procedures are currently in progress. Meanwhile, performance norms for anticipated heat delivery in different regions and parts of Indiavfor various CSTs have been made available;
- Awareness and capacity barriers, by organising a technical training programme on 'operation and maintenance and troubleshooting' with manuals for each of the 6 CSH technologies (in English and Hindi), organisation of awareness raising workshops and supporting recurrent publications (Insolthermal Times; Sun Focus); and organisation of exposure trips;
- *Demonstration*. Technical support has been extended to the formulation of feasibility studies. Additional financial support has been or is planned to be provided to 53 demonstration and replication projects (of which 20 have been installed up to date).

Since project inception, the number of projects (installed and planned) has increased significantly, as well the number of annual installations (and corresponding CST area). Apart from Scheffler (and ARUN), other CST technologies are making in-roads. Nonetheless, less progress has been made in addressing financial barriers and issues, which will be discussed in the next Section 8.2.

8.2 Recommendations

Mid-term review questions (see Box 1)

- Recommendations:
 - o Corrective actions for the design, implementation, monitoring and evaluation of the project
 - Actions to follow up or reinforce initial benefits from the project
 - o Proposals for future directions underlining main objectives

1) Increased focus on removing the financial barriers (Component 4 and Sustainability)

The rating for achievement of results corresponds with our assessment of how the Project is on its way to lower barriers (technical, awareness) and how likely it will be have sustainability of the project-supported interventions after the project's end. In this respect, CSH India has focussed (with achievements) on technological and capacity and awareness barriers. In the second half, the attention should shift more towards financial and policy issues.

As indicated already in the Project Document, in present from the MNRE subsidy scheme does not sufficiently differentiate between different CSH technologies on the basis of their performance. The current subsidy system (30% of benchmark price) lowers payback times to 4-8 years, which is still not deemed financially attractive enough by beneficiaries²⁵. On the other hand, high subvention levels will deter manufacturers to improve their product and for beneficiaries to integrate CST more efficiently into their processes. Eventually, as the market develops and sales volumes increase, the cost of CSH will come down, but this may take 15 years or so. Meanwhile, the Project can support the subvention discussion by (when more performance data become available as a result of the online monitoring and demo project evaluations) updating and documenting actual financial and payback performance indicators as a basis for formulation of a suitable policy for CSH (under the JN National Solar Mission) with a revised subsidy system, taking into account the performance of the various CST per climatic region and type of application, and more clearly stating the role of financial institutions.

The online monitoring provides info on the systems installed and, over time, and might enable setting performance benchmarks²⁶. Benchmarks would enable MNRE to adapt its subsidy system from providing incentives based on m² installed to a more performance-based subsidy system.

The latter will require capacity building and awareness creation amongst banks and other financial institutions, who are in general not familiar with the CST technology. It will also require the identification of appropriate financing mechanisms, in which the subsidy element would decrease slowly over time. To raise confidence level of potential investors, setting up 'risk guarantee schemes' may be optional. The Project has only just started involving commercial energy service companies (ESCOs). The ESCO mode can potentially help the beneficiary in some risk sharing after the warranty period expires. The Project should explore the pros and cons of the ESCO route further. Up to now, there has been no much progress in the 'ESCO route'. The Project has been optimistic and expects some 5-10 ESCO projects coming in 2015, so the proof of the pudding will be in the eating.

²⁵ Given the fact that benchmark are often 5-7 years old, not representing current capital cost. It was mentioned that the MNRE subsidy works out at 20% of capital cost.

²⁶ If quality of data improve. Data reliability depends on various factors, e.g. cleanliness of pyranometers are cleaned every day, regular adjusting of the shading ring on the pyranometers, iii) cleaning of reflectors of CSTs, iv) repairs on part of the whole CST system; v) data transmission problems, etc. An assignment on 'Collection & Compilation of performance data on CST based systems through remote monitoring" has been recently awarded to a consulting firm and is expected to provide data for 80 systems by end of the project. Methodology and format for collection of data are described in the ToR of the assignment.

3) Continuation of training (Components 1)

A number of technical trainings were provided at various locations on 'operation, maintenance and troubleshooting'. These trainings were typically of 3-day duration. As part of the contracts, usually manufacturers are required to train personnel 'on-the-job' of the unit or company where the CST will be installed. However, we have three observations. First, trained personnel may depart after a while, thus leaving a knowledge gaps. Second, staff trained by a particular manufacturer may not be fully knowledgeable of the designs of other manufacturers (even if the same CST is concerned). Third, a 3-day training may not be enough and periodic 'refresher' trainings may be needed. The training modules (developed by Anthropower) have potential for future replication and could be 'institutionalised' (implemented by one or more institutions as a course, possibly on a self-sustenance basis). One recommendation is to refresh the stocktaking of training needs (especially as more systems of different CSTs will get installed over 2015-16) and adapt, expand and extend training and short courses in accordance with the findings of this stocktaking.

4) Testing (Component 1)

Testing focusses on the performance of CST systems, although in the project these will be all recently installed systems. However, CSTs may reach a 15-20 year lifetime. As no old equipment is currently installed, testing could be expanded by adding methods of artificially aging of the equipment. Two such tests include salt spray tests and abrasion test. Another advanced testing set-up would be for measuring optical performance of the CST (e.g. photogrammetry). These were not part of the Project design and its budget will not allow more funds to be allocated for testing equipment. Even if funding would be available, we would like to caution against establishing an expensive testing infrastructure, which may be not be used in the end in a cost-effective way. The best approach would be to see how the existing test centres (Pune, NISE) will function over the coming years, not only from a technical viewpoint, but cost-effectiveness as well. To improve their economics these can double as testing and as training facility. Towards the end of the CSH India Project it could be investigated how the test facilities can be expanded, e.g. by acquiring more equipment (to do salt spray and abrasion tests). Given the fact that perhaps the testing at Pune and NISE are the only facilities in the region, it should be investigated, if these could function at a regional level. Pooling funding for such a regional function could enable financing of expensive testing infrastructure in a more cost-effective way.

5) International cooperation (sustainability)

There is need for continuing cooperation between the various institutions, associations and agencies working on concentrated solar. Such cooperation may include data sharing (respecting confidentiality), knowledge sharing, joint events and promotional events. Regarding research institutions and academia this could include a more intense cooperation with institutions (and companies) abroad. India can learn from the advanced test laboratories and facilities abroad and more fully understand international 'best practices'.

Given India's position as a pioneer worldwide in (commercial) CSH application, this offers scope for South-South cooperation. A provision should be made in the Project's work plans to transfer the 'lessons learnt' in CST and heat applications to abroad. The CSH India Project has the potential to be presented as a 'best practice' and UNDP might devote some resources to present the Project, internally as an example of the potential role of CST, and externally, at sustainable energy and climate change fora and events.

6) UNIDO/GEF "Promoting business models for increasing penetration and scaling up of solar energy

The project was initiated in 2014 (approved by GEF in Dec 2013) with an expected 5-year duration, and will focus on solar-based technology for industry, focussing on processes in the temperature range of 150-400°C in various industries, such as pulp and paper, food processing, fertilizer, pharmaceutical industries, textiles, desalination and tobacco industry. Its four components are similar to the CSH India Project, a) strengthening policy and institutional framework; b) technology investment and application (including 15-25 pilot

demonstrations), c) scaling up (business models and financing; supply of quality components), and d) awareness raising and capacity building.

Box 19 UNIDO/GEF Promoting business models for increasing penetration and scaling up of solar energy

The GEF-UNIDO project aims to facilitate the installation of 45,000 m² of installed CS collector area through 15-25 demonstration and 60 replication projects. Direct emission reductions from these projects during its 5 year period are estimated at 39,200 tonnes of CO₂. In addition the initiative aims to provide technology application information packages and standardization of CS performance measurement. Applications of solar heat at medium and high temperatures would be considered during the project in the following industrial sectors: Textiles (Weaving, Finishing), Pharmaceuticals, Tobacco, Breweries, Pulp & paper, Electroplating, Food processing (including Dairy & Sugar), Rubber, Chemical & Fertiliser, Petroleum Refineries, Desalination, Ceramic tile & pottery, Plaster of Paris, Steel rerolling, Cement, Mining, Other industries including tertiary using steam or cooling.

The PMU has been coordinating with UNIDO on project design. The following had been worked out to avoid overlapping:

- <u>Under UNIDO only:</u>
 - Co-generation and tri-generation projects in all establishments
 - New projects on space cooling/ Replacement of electrical driven VCR systems with VAR systems & on industrial refrigeration
 - Stand-alone hybrid systems for process heat application with automatic operations & storage facility to take care of intermittent clouds
 - o Projects based on heat pipes
- Under UNDP only:
 - Projects based on community cooking in all establishments
- Under both:
 - o Normal projects for process heat applications in industrial & commercial sectors
 - Retrofitted space cooling projects

Finally, a regular monitoring of both projects and their respective results will be foreseen to identify potential issues and take appropriate action for more refined alignment between the projects as they move forward. Both the GEF-UNDP and GEF-UNIDO project will co-ordinate closely through MNRE. This will be ensured by having regular updates and representation in the respective Project Steering Committees and by the fact both projects have the same NPD (Mr. Tarun Kapoor). More specifically, for the future coordination of both projects a close consultation and "**coordination platform**" will be established at MNRE level in order to exchange information and progress on both projects and formulate recommendation for alignment where required (this platform will indicatively convene every 2 months; chaired by the NPD/Joint Secretary).

Supposedly, the focus will towards the lower temperature of the range 150-400°C in SMEs (small and mediumsized enterprises), while arrangements have made to avoid overlapping (as described in Box 19). However, it might be difficult to avoid duplication and it is recommended that the functioning of the proposed 'coordination platform' will be closely monitored.

6) Suggestions for end-of-project report (Sustainability)

Towards the end of the project (Dec 2016) it might be helpful to commission an 'end-of-project' *impact study* to analyse to what extent the before-mentioned barriers to CST (technical, market demand, financial, informational, etc.) got removed and indicate what important *gaps* are still remaining, accompanied by a plan with suggested post-project *actions* to be implemented by the various actors involved (government, local government, academia and institutions, associations/representatives of manufacturers and beneficiaries).

This report should also address an exit strategy for certain activities initiated or supported under the project, once project funding dries up, e.g. maintaining and regular updating of the CSH India website, publications, monitoring of CST installations, toll-free support line, etc.

8.3 Lessons learned

Mid-term review questions (see Annex E)

• Lessons learned, if any, in addressing issues relating to relevance, performance and success

Although concentrated solar technology for heat applications (CSH) not a technology that globally has met much recognition as a proven, let alone, viable technology, India has managed to initiate a market for the nearcommercial application of CSH. Although led by a small management unit team, the UNDP/GEF CSH India Project has had a significant influence in lowering barriers leading to a noticeable increase in the installation of CSH systems. One reason is that is embedded in a government policy promoting solar thermal technologies, and second, because of working closely with a range of stakeholders from other government entities, CSH suppliers, beneficiary industries and institution, an academia.

1. INTRODUCTION

This is the Terms of Reference (ToR) for the UNDP-GEF Midterm Review (MTR) of the full sized project titled Market Development & Promotion of Solar Concentrators for Process Heat Applications in India (PIMS 4284) implemented through the Ministry of New & Renewable Energy (MNRE), which is to be undertaken in 2014. The project started on the 28th March 2012 and is in its third year of implementation. In line with the UNDP-GEF Guidance on MTRs, this MTR process was initiated before the submission of the second Project Implementation Report (PIR). This ToR sets out the expectations for this MTR. The MTR process must follow the guidance outlined in the document Guidance For Conducting Midterm Reviews of UNDP-Supported, GEF-Financed Projects link http://gef.undp.org/uploads/H- Jk1_dCXqGqaPG4BlccvA/Guidance_for_Conducting_Midterm_Reviews_of_UNDP-Supported_GEF- Financed_Projects_Final_June_2014.pdf

2. PROJECT BACKGROUND INFORMATION

The industrial sector is the second largest energy intensive sector in India accounting for about 37% of the total consumption. Process heat applications in sectors such as pharmaceuticals, metal plating, food processing, textiles and dairy require significant amount of heat in the low – medium temperature range of 90 to 250° C. They currently use fossil fuels such as furnace oil, diesel, coal, biomass and electricity for their energy needs. The process heat needs can be met with Concentrating Solar Heat (CSH) systems along with suitable process integration and heat storage.

The UNP-GEF-MNRE CSH project objective is to increase the use and promotion of CSH systems for low and medium temperature process heat applications. It aims to complement the efforts of MNRE to promote the use of Solar Concentrators for process heat applications by overcoming existing barriers in technology, awareness, capacity, market and financial. The overall project objective is to reduce the CO2 emission reductions by 32,900 tCO2 through technical support for setting up of demonstration and replication projects cumulating to 45,000 sq m of collector area. The project interventions will help in the tripling of the annual sales to 15,000 sq. m/ year by end of project. It will be implemented over a 5 year period until March 2017 across India. The key outcomes of the project are: (i) Technical Capacity Development, (ii) Awareness enhancement and capacity building, (iii) Pilot demonstration of CSH technologies for various applications, and (iv) Sustainable financial approach in the adoption of CSH technologies and applications. The total budget for the project is USD 23,750,000 – GEF: USD 4,400,000; MNRE (grants): USD 6,000,000; MNRE (in kind): 1,350,000; Industries: USD 6,000,000;

Financial Institutions: USD 6,000,000. Key stakeholders in the project are: National Institute of Solar Energy (formerly SEC), end users, CSH manufacturers and other subject experts/academic institutions.

3. OBJECTIVES OF THE MTR

The MTR will assess progress towards the achievement of the project objectives and outcomes as specified in the Project Document, and assess early signs of project success or failure with the goal of identifying the necessary changes to be made in order to set the project on-track to achieve its intended results. The MTR will also review the project's strategy, its risks to sustainability.

4. MTR APPROACH & METHODOLOGY

The MTR must provide evidence based information that is credible, reliable and useful. The MTR team will review all relevant sources of information including documents prepared during the preparation phase (i.e. PIF, UNDP Initiation Plan, UNDP Environmental & Social Safeguard Policy, the Project Document, project reports including Annual Project Review/PIRs, project budget revisions, lesson learned reports, national strategic and legal documents, and any other materials that the team considers useful for this evidence-based review). The MTR team will review the baseline GEF focal area Tracking Tool submitted to the GEF at CEO endorsement, and the midterm GEF focal area Tracking Tool that must be completed before the MTR field mission begins.

The MTR team is expected to follow a collaborative and participatory approach1 ensuring close engagement with the Project Team, government counterparts (the GEF Operational Focal Point), the UNDP Country Office(s), UNDP-GEF Regional Technical Advisers, and other key stakeholders.

Engagement of stakeholders is vital to a successful MTR.2 Stakeholder involvement should include interviews with stakeholders who have project responsibilities, including but not limited to executing agencies, senior officials and task team/component leaders, key experts and consultants in the subject area, Project Board, project stakeholders, academia, local government and CSOs, etc. Additionally, the MTR team is expected to conduct field missions to New Delhi, Gurgaon, Pune, and Bangalore/Mysore

The final MTR report should describe the full MTR approach taken and the rationale for the approach making explicit the underlying assumptions, challenges, strengths and weaknesses about the methods and approach of the review.

5. DETAILED SCOPE OF THE MTR

The MTR team will assess the following four categories of project progress. See the Guidance For Conducting Midterm Reviews of UNDP-Supported, GEF-Financed Projects (link http://gef.undp.org/uploads/H-Jk1_dCXqGqaPG4BlccvA/Guidance_for_Conducting_Midterm_Reviews_of_UNDP-Supported_GEF-Financed_Projects_Final_June_2014.pdf) for extended descriptions.

5.1 Project Strategy

Project design:

- Review the problem addressed by the project and the underlying assumptions. Review the effect of any incorrect assumptions or changes to the context to achieving the project results as outlined in the Project Document.
- Review the relevance of the project strategy and assess whether it provides the most effective route towards expected/intended results. Were lessons from other relevant projects properly incorporated into the project design?
- Review how the project addresses country priorities. Review country ownership. Was the project concept in line with the national sector development priorities and plans of the country (or of participating countries in the case of multi-country projects)?
- Review decision-making processes: were perspectives of those who would be affected by project decisions, those who could affect the outcomes, and those who could contribute information or other resources to the process, taken into account during project design processes?
- Review the extent to which relevant gender issues were raised in the project design. See Annex 9 of Guidance For Conducting Midterm Reviews of UNDP-Supported, GEF-Financed Projects for further guidelines.
- If there are major areas of concern, recommend areas for improvement.

Results Framework/Logframe:

- Undertake a critical analysis of the project's logframe indicators and targets, assess how "SMART" the midterm and end-of-project targets are (Specific, Measurable, Attainable, Relevant, Time-bound), and suggest specific amendments/revisions to the targets and indicators as necessary.
- Are the project's objectives and outcomes or components clear, practical, and feasible within its time frame?
- Examine if progress so far has led to, or could in the future catalyse beneficial development effects (i.e. income generation, gender equality and women's empowerment, improved governance etc.) that should be included in the project results framework and monitored on an annual basis.
- Ensure broader development and gender aspects of the project are being monitored effectively. Develop and recommend SMART 'development' indicators, including sex-disaggregated indicators and indicators that capture development benefits.

5.2 Progress Towards Results

Progress Towards Outcomes Analysis:

• Review the logframe indicators against progress made towards the end-of-project targets using the Progress Towards Results Matrix and following the Guidance For Conducting Midterm Reviews of UNDP- Supported, GEF-Financed Projects; colour code progress in a "traffic light system" based on the level of progress achieved; assign a rating on progress for each outcome; make recommendations from the areas marked as "Not on target to be achieved" (red).

Project Strategy	Indicator	Baseline Level	Level in 1 st PIR	Midterm Target	End-of- project Target	Midterm Level & Assessment	Achievement Rating	Justification for Rating
Objective:	Indicator (if applicable):							
Outcome 1:	Indicator 1:							
	Indicator 2:							
Outcome 2:	Indicator 3:							
	Indicator 4:							
	Etc.]	
Etc.								

Table. Progress Towards Results Matrix (Achievement of outcomes against End-of-project Targets)

Indicator Assessment Key

Green=Achieved Yellow=On target to be achieved Red= Not on target to be achieved

In addition to the progress towards outcomes analysis:

- Compare and analyse the GEF Tracking Tool at the Baseline with the one completed right before the Midterm Review.
- Identify remaining barriers to achieving the project objective in the remainder of the project.
- By reviewing the aspects of the project that have already been successful, identify ways in which the project can further expand these benefits.

5.3 Project Implementation and Adaptive Management

Management Arrangements:

- Review overall effectiveness of project management as outlined in the Project Document. Have changes been made and are they effective? Are responsibilities and reporting lines clear? Is decision- making transparent and undertaken in a timely manner? Recommend areas for improvement.
- Review the quality of execution of the Executing Agency/Implementing Partner(s) and recommend areas for improvement.
- Review the quality of support provided by the GEF Partner Agency (UNDP) and recommend areas for improvement.

Work Planning:

- Review any delays in project start-up and implementation, identify the causes and examine if they have been resolved.
- Are work-planning processes results-based? If not, suggest ways to re-orientate work planning to focus on results?
- Examine the use of the project's results framework/logframe as a management tool and review any changes made to it since project start.

Finance and co-finance:

- Consider the financial management of the project, with specific reference to the cost-effectiveness of interventions.
- Review the changes to fund allocations as a result of budget revisions and assess the appropriateness and relevance of such revisions.
- Does the project have the appropriate financial controls, including reporting and planning, that allow management to make informed decisions regarding the budget and allow for timely flow of funds?
- Informed by the co-financing monitoring table to be filled out, provide commentary on co-financing: is co-financing being used strategically to help the objectives of the project? Is the Project Team meeting with all co-financing partners regularly in order to align financing priorities and annual work plans?

Project-level Monitoring and Evaluation Systems:

• Review the monitoring tools currently being used: Do they provide the necessary information? Do they involve key partners? Are they aligned or mainstreamed with national systems? Do they use existing information? Are they

efficient? Are they cost-effective? Are additional tools required? How could they be made more participatory and inclusive?

• Examine the financial management of the project monitoring and evaluation budget. Are sufficient resources being allocated to monitoring and evaluation? Are these resources being allocated effectively?

Stakeholder Engagement:

- Project management: Has the project developed and leveraged the necessary and appropriate partnerships with direct and tangential stakeholders?
- Participation and country-driven processes: Do local and national government stakeholders support the objectives of the project? Do they continue to have an active role in project decision-making that supports efficient and effective project implementation?
- Participation and public awareness: To what extent has stakeholder involvement and public awareness contributed to the progress towards achievement of project objectives?

Reporting:

- Assess how adaptive management changes have been reported by the project management and shared with the Project Board.
- Assess how well the Project Team and partners undertake and fulfil GEF reporting requirements (i.e. how have they addressed poorly-rated PIRs, if applicable?)
- Assess how lessons derived from the adaptive management process have been documented, shared with key partners and internalized by partners.

Communications:

- Review internal project communication with stakeholders: Is communication regular and effective? Are there key stakeholders left out of communication? Are there feedback mechanisms when communication is received? Does this communication with stakeholders contribute to their awareness of project outcomes and activities and investment in the sustainability of project results?
- Review external project communication: Are proper means of communication established or being established to express the project progress and intended impact to the public (is there a web presence, for example? Or did the project implement appropriate outreach and public awareness campaigns?)
- For reporting purposes, write one half-page paragraph that summarizes the project's progress towards results in terms of contribution to sustainable development benefits, as well as global environmental benefits.

5.4 Sustainability

- Validate whether the risks identified in the Project Document, Annual Project Review/PIRs and the ATLAS Risk Management Module are the most important and whether the risk ratings applied are appropriate and up to date. If not, explain why.
- In addition, assess the following risks to sustainability:

Financial risks to sustainability:

• What is the likelihood of financial and economic resources not being available once the GEF assistance ends (consider potential resources can be from multiple sources, such as the public and private sectors, income generating activities, and other funding that will be adequate financial resources for sustaining project's outcomes)?

Socio-economic risks to sustainability:

• Are there any social or political risks that may jeopardize sustainability of project outcomes? What is the risk that the level of stakeholder ownership (including ownership by governments and other key stakeholders) will be insufficient to allow for the project outcomes/benefits to be sustained? Do the various key stakeholders see that it is in their interest that the project benefits continue to flow? Is there sufficient public/stakeholder awareness in support of the long term objectives of the project? Are lessons learned being documented by the Project Team on a continual basis and shared/ transferred to appropriate parties who could learn from the project and potentially replicate and/or scale it in the future?

Institutional Framework and Governance risks to sustainability:

• Do the legal frameworks, policies, governance structures and processes pose risks that may jeopardize sustenance of project benefits? While assessing this parameter, also consider if the required systems/mechanisms for accountability, transparency, and technical knowledge transfer are in place.

Environmental risks to sustainability:

• Are there any environmental risks that may jeopardize sustenance of project outcomes?

Conclusions & Recommendations

The MTR team will include a section of the report setting out the MTR's evidence-based conclusions, in light of the findings.8 Recommendations should be succinct suggestions for critical intervention that are specific, measurable, achievable, and relevant. A recommendation table should be put in the report's executive summary. See the Guidance For Conducting Midterm Reviews of UNDP-Supported, GEF-Financed ojects for guidance on a recommendation table.

The MTR team should make no more than 15 recommendations total.

Ratings

The MTR team will include its ratings of the project's results and brief descriptions of the associated achievements in a MTR Ratings & Achievement Summary Table in the Executive Summary of the MTR report. See Annex E for ratings scales. No rating on Project Strategy and no overall project rating is required.

Table. MTR Ratings & Achievement Summary Table for (Market Development and Promotion of Solar Concentrator based Process Heat Applications in India (India CSH)

Measure	MTR Rating	Achievement Description
Project Strategy	N/A	
Progress Towards Results	Objective Achievement Rating: (rate 6 pt. scale)	
	Outcome 1.1 Outcome 1.2 Outcome 1.3 Achievement Rating: (rate 6 pt. scale)	
	Outcome 2.1 Outcome 2.2 Achievement Rating: (rate 6 pt. scale)	
	Outcome 3.1 Outcome 3.2 Achievement Rating: (rate 6 pt. scale)	
	Outcome 4.1 Outcome 4.2 Achievement Rating: (rate 6 pt. scale)	
Project Implementation & Adaptive Management	(rate 6 pt. scale)	
Sustainability	(rate 4 pt. scale)	

6. TIMEFRAME

Total duration of the MTR will be approximately (5 weeks) starting 30th September 2014, and shall not exceed five months from when the consultant(s) are hired. The tentative MTR timeframe is as follows:

TIMEFRAME	ACTIVITY	
12 th September – 19 th September 2014	Application closes	
22nd September to 30th September	Select MTR Team	
1st October to 10th October 2014	Prep the MTR Team (handover of Project Documents)	
13 th October to 17 th October 2014	Document review and preparing MTR Inception Report	
22 nd October 2014	Finalization and Validation of MTR Inception Report- latest start of MTR mission	
27th October to 3rd November 2014, 7	MTR mission: stakeholder meetings, interviews, field visits	
3 rd November 2014	Mission wrap-up meeting & presentation of initial findings- earliest end of MTR mission	
3rd November to 18th November 2014	Preparing draft report	
26th November 2014	Incorporating audit trail from feedback on draft report/Finalization of MTR report	
1 st December 2014	Preparation & Issue of Management Response	
1st December 2014	Expected date of full MTR completion	

Options for site visits should be provided in the Inception Report.

7. MIDTERM REVIEW DELIVERABLES

#	Deliverable	Description	Timing	Responsibilities
1	MTR Inception Report	MTR team clarifies objectives and methods of Midterm Review	No later than 2 weeks before the MTR mission	MTR team submits to the Commissioning Unit and project management
2	Presentation	Initial Findings	End of MTR mission	MTR Team presents to project management and the Commissioning Unit
3	Draft Final Report	Full report (using guidelines on content outlined in Annex B) with annexes	Within 3 weeks of the MTR mission	Sent to the Commissioning Unit, reviewed by RTA, Project Coordinating Unit, GEF OFP
4	Final Report*	Revised report with audit trail detailing how all received comments have (and have not) been addressed in the final MTR report	Within 2 week s of receiving UNDP comments on draft	Sent to the Commissioning Unit

*The final MTR report must be in English. If applicable, the Commissioning Unit may choose to arrange for a translation of the report into a language more widely shared by national stakeholders.

8. MTR ARRANGEMENTS

The principal responsibility for managing this MTR resides with the Commissioning Unit. The Commissioning Unit for this project's MTR is UNDP CO, India.

The commissioning unit will contract the consultants and ensure the timely provision of per diems and travel arrangements within the country for the MTR team. The Project Team will be responsible for liaising with the MTR team to provide all relevant documents, set up stakeholder interviews, and arrange field visits.

9. TEAM COMPOSITION

A team of two independent consultants will conduct the MTR - one team leader (with experience and exposure to projects and evaluations in other regions globally) and one team expert, usually from the country of the project.

The consultants cannot have participated in the project preparation, formulation, and/or implementation (including the writing of the Project Document) and should not have a conflict of interest with project's related activities.

The selection of International consultant will be aimed at maximizing the overall "team" qualities in the following areas:

- Recent experience with result-based management evaluation methodologies (10%);
- Experience applying SMART indicators and reconstructing or validating baseline scenarios (10%);
- Competence in adaptive management, as applied to (Climate Change Mitigation) (5%);
- Work experience working with the GEF or GEF-evaluations for at least 8 years (10%);
- Experience working in (South and South East Asia) (5%);
- Work experience in relevant technical areas for at least 10 years (10%);
- Demonstrated understanding of issues related to gender and (Climate Change Mitigation); experience in gender sensitive evaluation and analysis (2%).
- Excellent communication skills (5%);
- Demonstrable analytical skills (4%);
- Project evaluation/review experiences within United Nations system will be considered an asset (4%);
- A Master's degree in Engineering, Management, or other closely related field (5%). International consultant will act as team leader.

10. PAYMENT MODALITIES AND SPECIFICATIONS

10% of payment upon approval of the final MTR Inception Report 40% upon submission of the draft MTR report 50% upon finalization of the MTR report

ANNEX B. MISSION AGENDA AND ITINERARY

Day	Meeting and/or site visit	Relevance to the project
Sunday 14 Dec	Arrival of Mr. van den Akker in Delhi	
Mon 15 Dec Delhi	UNDP – kick-off-meeting (Mr. S.N. Srinivas)	India CSH is a GEF-UNDP-MNRE project. Mr. Srinivas is responsible at UNDP for the Project
	Anthro Power (Mr. Rama Siva, Mr. Srinivas)	Developed training manuals for O&M of 6 different CSH technologies; has conducted trainings at operators level across 12 different states
	PWC (Mr. Vibash Garg/Mr. Ishan Patel, Mr. Srinivas)	Working with potential end users in the industrial sector, and exploring their participation under project through awareness workshops & one-to- one interactions
	MNRE-PMU (Mr. R P Goswami, Mr. A K Singhal, Mr. Pankaj Kumar)	MNRE is the Implementing Partner for the project
Tue 16 Dec Gurgaon	NISE (Mr. Praveen Saxena, Mr. Sudhir Singh; Mr. Ramakrishna UNDP)	NISE is the technical partner for the project. The national test set up is also been set up here. It is also the institution which is supporting M. Tech & PhD students under the project
Wed 17 Dec	Pune University, Test Centre (Prof.	Pune university is being supported under the project
Thu 18 Dec Pune area	Ghaisas, Mr. Rahul Udawath, Mr. Adinath Pandey, Prof Jadkar; Ms. Manisha and Mr. Ramakrishna, UNDP)	to set up a testing centre for CSH technologies.
	Solar Thermal Federation of India, STFI (Mr. Jaideep Malviya; Mr. Ramakrishna UNDP)	Outreach activities – STFI supports a toll free number for FAQs on CSH systems, and publish a monthly e-newsletter called Insoltherm Times
	Eco Axis Pvt. Ltd (Ms. Indu, Mr. Rajaram, Mr. Sirish), followed by visit to online measurements at CSH system installed at Mahindra & Mahindra Vehicles	Installed online monitoring systems in 15 CSH sites, and is assigned the task of performance monitoring & technology assessment of the 6 CSH technologies
	Thermax Pvt. Ltd (Mr. Pathak, Mr. Krishna Kumar, Mr. Raman)	One of the main vendors for Scheffler systems widely in use for cooking & laundry applications
	Mr. Sammer Maithal (by Skype) of Greentec Solutions	Was involved as a national consultant at the design state of the project
Fri 19 Dec Hyderabad	Synthokem (Mr. Sriram, Mr. Rajaram, Mr. Sirish)	Demonstration project at a drug manufacturing company – thermic fluid, parabolic dish collector
-	Meeting at Synthokem's office with Mr. Siddarth Malik (Megawatt Solutions Pvt.)	Manufacturer of Parabolic dish systems
Sat-Sun Delhi	Report writing	
Mon 22 Dec	Debriefing at MNRE-PMU (Mr. Srinivas PNUD, Mr. A.K. Singhal, PMU)	
Tue 23 Dec	Departure of Mr. Van den Akker	

Mr. Mark Draeck (Project Manager at UNIDO, Vienna) was interviewed on 3 March (taking advantage of a visit by the International Consultant to Vienna) on the UNIDO/GEF project on solar (concentrating) energy.

ANNEX C. DOCUMENTS REVIEWED

Project documents, reports and UNDP-related documents

- GEF Project Identification Form (PIF)
- UNDP Project Document (with GEF CEO Endorsement Request)
- Project Inception report (May 2012)
- Annual Work Plans (2012, 2013, 2014)
- UNDP/GEF Project Implementation Reviews (PIR; 2013, 2014)
- Quarterly Monitoring Reports (2012: Q4; 2013: Q1, Q2, Q3, Q4; 2014: Q1, Q2)
- Combined Delivery Reports (2012, 2013, 2014)
- Various Back-to-Office Reports (BTORs)
- UN Development Assistance Framework (UNDAF) 2008-2012 and UNDAF 2013-2017
- UNDP Country Programme for India 2008-2012 and 2013-2017

Project-supported technical reports

- Assessment of CST Technologies for Off-Grid Applications in the International Market (EcoAxis Systems Pvt Ltd; Oct 2014)
- Compendium888 on CSH Project for Community Cooking, Process Heat and Cooling Applications (APITCO, Ltd)
- Detailed Project Report on Development of Performance Measuring Standards, Test Procedures and Test Protocols for Concentrating Solar Technologies (CSTs) to be Used for Process Heat Applications (University of Pune; GK Energy Marketers Ltd; Thermax India Ltd; Aksons Solar Equip. Ltd; Oct 2013)
- Final Project Report Development of Skilled Manpower for Operation, Maintenance & Troubleshooting of CST Based System for Process Heat (Anthropower, Nov 2014)
- Market development of CSTs for Community Cooking / Cooling Applications in Institutional and Religious Sectors (Ajay Chandak; Suman Foundation)
- Pre-feasibility Report, Siddarth Surgicals, Valsad, Gujarat (PwC, Nov 2013)
- Process Mapping of Chemical Sector for CST Intervention (PwC, Nov 2014)
- Report on Assessment of CST in India (EcoAxis Systems Pvt Ltd; Oct 2014)
- Report on the Status of 20 CST Installations (EcoAxis Systems Pvt Ltd; May 2014)
- Report on the Status of Instrumentation at 15 CST Installations (EcoAxis Systems Pvt Ltd; May 2014)
- Report on Assessment of Facilities of CST Manufacturers (EcoAxis Systems Pvt Ltd; May 2014)
- *Utility of Performance Monitoring of CST Systems to Various Stakeholders* (EcoAxis Systems Pvt Ltd; Oct 2014)

PowerPoint Presentations (presented during the MRT mission)

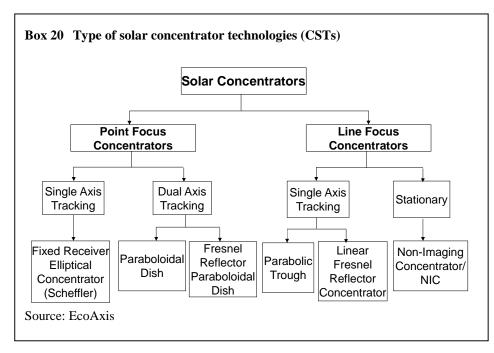
- 4th Project Steering and Advisory Committee Meeting, 5 January 2015: Project Progress and Plans for 2015 (PMU, UNDP-GEG CSH India Project)
- Development of Skilled Manpower for the Operation, Maintenance and Troubleshooting of CST Systems (Anthropower, Nov 2014)
- Hybrid Solar Thermal Technologies for Polygeneration, (NISE; S.K. Singh; Dec 14)
- Independent Technology Assessment & Performance Evaluation of Concentrating Solar Technologies (CSTs) Based Systems for Community Cooking, Process Heat and Cooling Application (EcoAxis Systems; 18 Dec 2014)
- Performance Mapping and Characterization of Solar Thermal Technologies (NISE; S.K. Singh; Dec 14)
- Procurement and installation of equipment/instruments for on-line performance monitoring of selected Concentrating Solar Technology (CST) based installations (EcoAxis Systems; 18 Dec 2014);

Information packages and info available at CSH India website

- *Concentrating Solar Technologies for Medium and High Temperature Application* (prepared by ExoAxis for MNRE under UNDP-GEF Project):
 - o Fixed Focus Elleptical Solar Dish (Scheffler)
 - o Fresnel Reflector Based Dish
 - o Linear Fresnel Concentrator
 - Non-Imaging Concentrator
 - Parabolic Through Concentrator
 - o Paraboloid dish
- Case studies:
 - Elaborated by PricewaterhouseCoopers (PwC):
 - Using non imaging concentrator for boiler feed water heating (ITC factory, Bangalore)
 - Using ARUN dish for washing application (Mahindra Vehicle Manufacturers, Chakan, Pune)
 - Using parabolic trough for phosphating process (SKF Technologies, Mysore)
 - Using Scheffler dish for cooking and LPG vaporisation application (Mahindra, Chakan, Pune)
 - Using Scheffler dish for steam pressing (Purple Creations, Baramati, Pune)
 - Elaborated by PRINCE, Suman Foundation:
 - Use of Scheffler Solar Concentrators for Community Cooking at SRM University Chennai
 - Use of Scheffler Solar Concentrators for Community Cooking at JNV, Leh
 - Use of ARUN 100 Solar Concentrator for Community Cooking at Akshardham Temple Delhi
 Elaborated by WISE
 - A Case Study on Gajraj Drycleaners, Ahmednagar, for Solar Laundry
 - A Case Study on Shirdi Solar Steam Cooking System
 - A Case Study on Solar Concentrators Installed at Hotel ITC Maurya, New Delhi
 - A Case Study on Solar Concentrators Installed at CSM Hospital, Thane

Other publications and documents

- MNRE (Feb 2011) Strategic Plan for New and Renewable Energy Sector for the Period 2011-17
- Planning Commission (Govt of India; 2013)
 Twelfth Five Year Plan (2012-2017, Economic Sectors, Volume II
- Prime Minister's Council on Climate Change, Government of India National Action Plan on Climate Change


D.1 Concentrated solar technologies

Overview

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy or electrical energy for use in industry, and in the residential and commercial sectors. Solar thermal collector is the name for the device that collects heat by absorbing sunlight. Solar collectors are either non-concentrating (flat plate) or concentrating. The first type is used for low-temperature to medium temperature applications, usually for heating swimming pools of for heating water or air for residential or commercial use (solar water heaters) or to pre-heat water for steam production. In India, about 3.1 million of m^2 was installed by the beginning of 2010^{27} .

Because of the relatively high heat losses through the glazing, flat plate collectors will not reach temperatures much above 100-150°C. Where temperatures below about 95°C are sufficient, flat-plate collectors of the nonconcentrating type are generally used. For temperatures over 95-120°C, concentrating solar technologies (CST) are preferred. These CSTs, also called concentrating, or concentrated solar thermal, systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight, or solar thermal energy, onto a small area. The terms Concentrated Solar Heat (CSH) is used in this report for fulfilling heat requirements in industries or other sectors, while Concentrated Solar Power (CSP) refers to applications where the heat collected is used for power generation (which is outside the scope of the CSH India Project).

CSP is only applied in a number of countries. The reader is referred to the IRENA publication on concentrating solar power²⁸. By 2011/12, around 1924 MW of commercial CSP plants were operational, mainly in Spain (1331 MW) and the USA (518 MW), usually based on the parabolic through technology.

CSH applications use the type of CSTs as for power generation, but the technologies can be less expensive as the fluid temperature required are in the range of 120-250°C. India accounts for most of CSH applications. As of 2011/12, there were about 200 industrial CSH worldwide, of which about 85 in India²⁹.

There are six main solar collector technologies that are of relevance to the Project, as listed in Box 18.

²⁷ Solar Water Heaters Usage in India – Current Scenario and Vision 2020-Review, in International Journal of Recent Development in Engineering and Technology (Vol2-2; Feb 2014), by Gowda, N, et.al.

²⁸ Concentrating Solar Power, Vol 1 (Power Sector), Issue 2/5; International Renewable Energy Agency (IRENA; June 2012)

²⁹ EcoAxis report on CST technologies in international market; Presentation at 4th PSAC meeting (Jan 2015) (see Annex C);

Box 20 provides an overview of the features of the six solar concentrator collector technologies used in CSH applications. The CSTs differ considerably in their output (temperature, specific thermal power), cost, module size, area required and weight. Each of these parameters has a bearing on the selection of the CSH technology used for a particular application. Some CSTs, such as Scheffler (parabolic dish with fixed focus) are better suited for temperatures lower than 130°C and 150°C respectively, while other technologies can deliver higher temperatures of up to 350°C.

Application of CSH

The interest in promoting CSH technologies arises from the fact that two-third of industrial end energy consumption is thermal energy (process heat). One third of industrial process heat demand is below 200°C which suits the integration of solar concentrator systems in process heat applications. Typical temperature requirements of industrial processes are shown in Box 19.

Steam is the most widely used working fluid for providing industrial heat at up to 250°C. Apart from steam, the other working fluids employed are pressurized hot water, hot oil and hot air. The heat-using sectors can be divided into those having large steam requirements (of > 5 tons/hour) and those having small steam requirements (of < 5 tons/hour). The industries with large steam requirements are characterized by the use of less expensive solid fuels (in particular coal) which results in a longer payback period for CSH systems; also the size and investment in a typical CSH installation would be too large to meet such a substantial steam demand. Most of the existing CSH installations in India are therefore in industries and for applications with small steam requirements and using higher cost fuels (in particular fuel oil).

Sector	Process	Process
		temperature
		range (°C)
Food and beverages	Drying	30-90
(hotels, hospitals, institutional	Washing	40-80
cooking, dairy processing)	Pasteurising	80-110
	Boiling/cooking	95-105
	Sterilizing	140-150
	Heat treatment	40-60
Metal treatment (galvanizing,	Cleaning of the	60-90
anodizing and painting)	metal	
Textile industry	Washing (laundry)	40-80
	Bleaching	60-100
	Dyeing	100-160
Chemical and pharmaceutical	Boiling	95-105
industry	Distilling	110-300
	Chemical processes	120-180
Rubber heating	Vulcanization	170
Cooling; air conditioning	Vaporisation	
All processes	Pre-heating of	30-100
	boiler feed-water	

Box 21 Temperature requirements of selected processes

Source: Project document and other sources

D.2 Status of CSH application in India

At the time of writing the project documentation (2010), there were about 70 (semi-)commercial CSH applications (excluding very small systems, like solar cookers, comprising about 60% of all dishes) that used two CST technologies, mostly Scheffler (fixed-focus parabolic dish) and also ARUN (Fresnel reflector-based dish). Extensive efforts made researcher and solar industry, supported by the CSH India Project, have resulted in the promotion of four more CST technologies of different designs. A summary of some features the six CST technologies currently applied in India is given in Box 20. By March 2013, the number of installed CST installations had increased to 144 (again, excluding very small systems, about 280, i.e. 30% of the total):

• Steam cooking systems: 121,

• Process heat (laundry and industrial): 15

[•] Solar cooling: 8,

Box 22 Overview of various CST technologies

	Fixed focus elliptical dish (Scheffler)	Parabolic trough concentrator (PTC)	Fresnel reflector based dish (ARUN)	Linear Fresnel reflector concentrator (LRFC)	Paraboloid dish	Non-Imaging collector (NIC)
Temperature achieved (°C)	Max. 160	Max. 350	Max 350	250-400	Max 350	Max 120
Tracking	Single axis	Single axis	Dual axis	Single axis	Dual axis	Stationary
Automation	Difficult	Good	Very good	Very good	Very good	Limited
Efficiency (%)	20-65	30-80	40-80	30-70	40-85	35-70
Manufacturers in India	10	5	1	1	2	3
Status of technology	Stabilised with scope for improvement	Stabilised	Indigenous – developing	Developing	Developing	Developing
Cost estimate (INR/m ²) ³⁰	18,000	18,000	20,000	18,000	20,000	16,000
Potential market in India	Institutions for cooking e.g. village schools where mid-day meals are served under the State of Central Government programmes. Market might exceed 3000 dishes.	Market in the industrial sector. Attractive if combined with a suitable thermal storage system.	Market in the industrial sector. Trade-off between cost & benefits to be addressed	Market in the industrial sector. Attractive if combined with a suitable thermal storage system. Large- scale desalination plants & large institutions may be the areas of interest.	Large users of heat at relatively high temperatures. Trade- off between size, cost and efficiency would have to be established	Applications which require hot water at temperatures < 120°C and where adequate contiguous area is available. Suitable for remote locations & schools, religious institutions, laundries, hotels, food processing
Examples	Purple Creations ITC Maurya, Delhi Mount Abu JNV, Leh Mahindra Vehicles	M. Ayurveda pharmac. SKF, Mysore	Hotel ITC Maurya Akshardam Temple Mahindra Vehicles Turbo Energy (Paiyannur)	Power supply, Gurgaon Desalination plant (Tamil Nadu)	Power supplu, Gujarat Pharmaceutical plant	ITC tobacco, Bangalore Bergen Electronics (Gurgaon)

³⁰ Auxiliary systems such as water treatment and storage system, piping and insulation may add additional cost of 15-30%. All data in the table compiled from EcoAxis reports (see Annex C).

Installed collector area of these 144 systems was 28,000 m², of which:

- Parabolic Schiffler dish, 23000 m²,
- Parabolic ARUN dish, 2470 m²,
- Parabolic through, 1000 m²,

Г

• Linear Fresnel reflector, 1500 m².

After March 2013, the Project has supported an additional with the preparation of 53 projects, of which 20 were installed by the end of 2014. It should be noted that the number of larger projects (i.e. $> 250 \text{ m}^2$) has increased significantly.

In 2010 there were 10 existing CSH manufacturers in India (known to MNRE) with one manufacturer involved in the making of the locally developed ARUN parabolic dish, the rest being manufacturers of the simpler Scheffler CSH systems. The current list of manufacturers, empanelled by MNRE, for the installation of CSH systems (for cooking, cooling and process heat applications) contains 20 entries, as given below:

Box 23 List of manufacturers in India for CSH supply and installation

1. Unisun Technologies (Bangalore)	1. Single axis tracked; Scheffler dishes		
2. Thermax Ltd (Chichwad, Pune)	2. Single axis tracked parabolic troughs; Scheffler		
	dishes both single axis and double axis tracked; ETC		
	based Non-imaging concentrating system		
3. Clique Developents (Charkop, Kandivali)	3. Double axis tracked Fresnel based dishes		
4. Megawatt Solutions Pvt Ltd (Chennai)	4. Double axis tracked paraboloid dishes		
5. Taylormade Solar Soultion Pvt Ltd (Ahmedabad)	5. Single axis tracked Scheffler dishes		
6. Essential Equipments (Deopur, Dhule; Maharashtra)	6. Single axis tracked Scheffler dishes		
7. Airier Natura Pvt Ltd (Bangalore)	7. Single axis tracked Scheffler dishes		
8. Sharada Inventions (Nashik)	8. Single axis tracked Scheffler dishes		
9. Ultra Conserve Pvt Ltd (Mumbai)	9. Single axis parabolic trough; Non-imaging		
	Concentrating system;		
10. Bhagawatu International Ltd (Noida)	10. Single axis tracked; Scheffler dishes		
11. Bergen Solar Power Ltd (Gurgaon)	11. ETC based Non-imaging concentrating		
12. K Energy (Jodhpur)	12. Single axis tracked Scheffler dishes		
13. Akson's Solar Equipment Pvt Ltd (Kothrud, Pune)	13. Single axis tracked Scheffler dishes		
14. M/S Lveragenet Soultions Pvt Ltd (Pune)	14. Single axis Concentrated parabolic trough collector		
15. M/S Forbes Solar PVt Ltd (Pune)	15.2-axis concentrator dish		
16. KG Design Services Pvt Ltd (Coimbatore)	16. Single axis tracked Linear Fresnel Reflector based systems		
17. Oorja Energy Engineering (Hyderabad)	17. Dual axis parabolic trough collectors		
18. Green Era Energy Pvt Ltd (Coimbatore)	18. Parabolic Trough Collectors (Single Axis)		
19. ATE Enterprises Pvt Ltd (Pune)	19. Double axis Paraboloid dishes		
20. M.S Jayanthi Plastics, Stellar Energy (Erode)	20. Line Focus Parabolic Trough Collectors		

ANNEX E. ABOUT THE EVALUATORS

Mr. Johannes (Jan) H.A. VAN DEN AKKER is a technology management scientist with a Master's degree from Eindhoven University of Technology (Netherlands), specializing in international development cooperation. He is an expert on sustainable energy policy and technologies. Mr. Van den Akker specializes in studies and analytical work, project design and development, project coordination and implementation, project monitoring and evaluation, knowledge management, capacity strengthening and public-private partnerships in the field of sustainable energy strategies, energy efficiency, energy technologies and supply, climate change and the Clean Development Mechanism. He has lived and worked abroad for over 7 years in Zambia, Mexico and Thailand. In addition, has undertaken numerous short missions to about 45 countries in Africa, Latin America and Asia & the Pacific.

In 2003/2004 he founded ASCENDIS, as an independent office, and has been providing consultancy on sustainable energy and climate change, specializing in development issues. ASCENDIS is based in Westerhoven, Netherlands, but offers services in Africa, Asia and the Pacific, Europe and Latin America & the Caribbean, often by associating itself with local freelance experts, professionals and organizations. As a long-term expert with the United Nations system, Mr. Van den Akker has provided advice to governments and organizations on the design of investment and capacity building programs for UNEP, UNDP and UNIDO, mostly in GEF-funded activities, UNFCCC and for NGOs/consultancy companies (e.g., Practical Action Consulting, Winrock) in the area of renewable energy, energy efficiency and sustainable transportation.

Mr. Dinesh AGGARWAL is a climate change mitigation and sustainable development specialist. He has master's degree in Chemical Engineering from Indian Institute of Technology, Delhi (IIT, Delhi). In the area of climate change mitigation he has wide experience of working across different sectors ranging from waste management, energy efficiency, chemical processes to renewable energy, using financial, policy, technical and regulatory measures. He has more than 30 years of professional experience providing consulting services in the domain of business research, sustainable development, development studies, climate change mitigation and adaptation, monitoring and evaluation, development of standards etc. His past employers include TERI, Deloitte and, UNFCCC. He is presently working as an independent consultant. Apart from India he has experience of working in Germany and Tuvalu.

He has in the past worked on the projects funded by donor agencies like DFID, GIZ, CIDA and multilateral agencies like UNDP /GEF, UNICEF, UNIDO. Being a member of the methodologies panel of CDM Executive Board he has worked for United Nations Framework Convention for Climate Change (UNFCCC) for four years. He has experience for development of and implementation of projects having result based management framework.

ANNEX F. CONSULTANT CODE OF CONDUCT FORM

Evaluators/reviewers:

- 1. Must present information that is complete and fair in its assessment of strengths and weaknesses so that decisions or actions taken are well founded
- 2. Must disclose the full set of evaluation findings along with information on their limitations and have this accessible to all affected by the evaluation with expressed legal rights to receive results.
- 3. Should protect the anonymity and confidentiality of individual informants. They should provide maximum notice, minimize demands on time, and respect people's right not to engage. Evaluators must respect people's right to provide information in confidence, and must ensure that sensitive information cannot be traced to its source. Evaluators are not expected to evaluate individuals, and must balance an evaluation of management functions with this general principle.
- 4. Sometimes uncover evidence of wrongdoing while conducting evaluations. Such cases must be reported discreetly to the appropriate investigative body. Evaluators should consult with other relevant oversight entities when there is any doubt about if and how issues should be reported.
- 5. Should be sensitive to beliefs, manners and customs and act with integrity and honesty in their relations with all stakeholders. In line with the UN Universal Declaration of Human Rights, evaluators must be sensitive to and address issues of discrimination and gender equality. They should avoid offending the dignity and self-respect of those persons with whom they come in contact in the course of the evaluation. Knowing that evaluation might negatively affect the interests of some stakeholders, evaluators should conduct the evaluation and communicate its purpose and results in a way that clearly respects the stakeholders' dignity and self-worth.
- 6. Are responsible for their performance and their product(s). They are responsible for the clear, accurate and fair written and/or oral presentation of study limitations, findings and recommendations.
- 7. Should reflect sound accounting procedures and be prudent in using the resources of the evaluation.

Evaluation/reviewer Consultant Agreement Form

Agreement to abide by the Code of Conduct for Evaluation in the UN System

Name of Consultant: <u>J.H.A. VAN DEN AKKER (Team Leader, on behalf of the Team)</u> Name of Consultancy Organization (where relevant): _______ I confirm that I have received and understood and will abide by the United Nations Code of Conduct for Evaluation.

Signed at Westerhoven, Netherlands Signature:	Willer
0	MV.
	\wedge

Projects supported under UNDP/0	SEF														Mark	t estimates	0	wn estimatio	ons
Expected			Installed									-	Installed CSH		Mid	Dec	Mid	Dec	Dec
at EOP	Total	Area	Total	20	8.509								instance con		2012	2013		2016	20
at EOF	Total	Alea	demo	15			20.11	fetime				-	Total - number		85	160	253	2010	20.
Demo			repli				20 1	reume	-				Process heat &			24	48		
- Process heat	19	8321	repii		705								Cooking	cooning		136	205		
- Cooling	2												Total - area (m2	2)	25,000	32,000		70,000	181,56
- Cooking	2		Energy			Averages							Process heat &		23,000	13,760		70,000	101,50
Subtotal 30	23		LICIBY			Annual			Lifetime				Cooking	cooms		18,240			
Replication	20	11047	9,452	11.635	MWh/yr	10,544	MWh/yr		210,872	MWh			Market growth			18%	32%	28%	10%/yr
- Process heat	8	3 1737	Factor	,								L. L			1		9-7-	-0/5	
- Cooking	22		0.284	0.35															
Subtotal 60	30		GHG	0.55															10325
Total 90	53		4703.641	5789.7	tCO2/yr	5.247	Mid-term value		104.933	tCO2									1270933
			94072.81	115794		-,													
of CSH application	Technology	Application description	Size	Investment	Subsidy MNRE		Savings			Payback t	time (vr)	Emission	reduction		Moneta	v			
or con application	reennonogy	Application accomption	(m ²)	(INR lakh)	(INR lakh)	Fuel		1114	INR (Lakh)	w/o subs					moneta	,			
			(m)	(INK lakh)	(INK lakh)	Fuer	Amount	Unit	INK (Lakn)	w/o subs	w subs	tCO ₂ /yr	tcO ₂ /m /yr						
ess heat	Scheffler	Steam for washing, drving of cloths	240	23.00	12.00	Diesel	6500	Dana	2.0	8.8	4.2	10.2	0.076						
aj DryCleaner, Gajraj			480						2.6		4.2	18.2	0.076				900 INR/47		
ole Creation, Baramati	Scheffler	Steam for washing garments	480	90.00				kg	7.90	11.4	8.1 4.1	33.8						kg cylinder	
hoken Labs Hyderabad	Scheffler	Processing of chemical compounds	2502	124.78				liter	24.00	5.2 6.7	4.1 4.6	168.0	0.373	13	s 0	31	40 INR/I		
Hosital, Thane	Scheffler	Cooling, hot water, sterilization		400.00			750,000		60.00			667.5	0.267						
el ITC Maurya, New Delhi	Scheffler, ARUN	Steam for laundry, cooking, heating	297	165.00		Natural gas		m³	33.33	12.0	3.3	59.2	0.199						
anad Dairy, Latur	ARUN	Hot water for milk pasteurization	160	51.70				liter	7.35	7.0	2.6	39.3	0.246				47.7 INR/lit	re	
indra Vehicles, Chakan	ARUN	Steam for cleaning engine parts	169	39.00			200,000		16.00	2.4	1.8	178.0	1.053	-		22	8 INR/kWh		
m Coop Milk Producers	ARUN	Milk pasteurization	338	101.00			28,588		15.72	6.4	5.1	84.2	0.249	7	/ 0	23			
Technology, Mysore	PTC	Hot water for metal phosphating	256	70.55				liter	6.60	10.7	8.6	35.3	0.138						
arth Surgicals, Valsad	PTC	Cleaning & bleaching of cotton	263	47.50		LPG		kg	14.00	3.4	2.4	60.0	0.228		0.12319				
Bangalore	NIC	Processing tobacco leaves	680	140.00				liter	24.75	5.7	4.7	132.5	0.195	4	5 0.06764		55 M (0.10		
Pune	NIC	Processing tobacco leaves	442	79.52			21,000		11.55	6.9	5.5	61.8	0.140			30	55 INR/litre		
indra Vehicles, Nagpur	NIC	Hot water for cooling	442	88.41	15.91	Electricity	240,000	кwn	19.20	4.6	3.8	213.6	0.483		3 0.14253 7 #DIV/0				
ling	Scheffler				60.48	LPG	50.000		25.00	6.0	4.3	450.0	0.134	1	/ #DIV/0				
indra Vehicles, Chakan		Chillers for cooling paint	1120	210.00				kg	35.00		4.3	150.0							
eywell Technology, Hyderabad	PTC	Space cooling	821	213.41			444,950		35.60	6.0	4.8	396.0	0.482			47	70 11 10 /		
IL, Power project, Kota king	PTC	Space cooling	641	245.32	34.61	Electricity	625,000	кwn	50.00	4.9	4.2	556.3	0.868			47	70 INR/kg		
di, Temple, Ahmednagar	Scheffler	Steam for cooking	1168	133.00	58.40	LPG	41,000	kg	28.70	4.6	2.6	123.0	0.105	3	2				
al, remple, runneanagai	Schemer		ALS 10469	2222.19			5.982		392.30	5.7	4.2	2976.8	0.284	5	·				
			10405	LLLL.L.	500.22	cherbi	5,502		352.50	5.7		2570.0	0.204						
				Prices:			0	O2 cor	ntent	Energy valu	•				1025	2500 INF	2/t		
Based on info provided by PwC bro	chures CST in Ind	ustrial Sector (Oct 2013)		LPG	70	INR/kg		gCO ₂ /k			- MJ/kg								
case studies prepared by WISE and		usina seeto, (see 2013),		Electricity	,0		0.9 kg			40.11	WID/ KB								
Payback periods are calculated usi		at adapt.		Fuel oil	55			gCO ₂ / k gCO ₃ /li		26.4.1	MJ/litre								
	• •	dei prices:				1													
Emission factors taken fro IGES an	d IPCC reports			Diesel	40	INR/liter		gCO ₂ /li			MJ/litre								
				Nat gas			1.8 kg	gCO ₂ /n	ท้	32.6	MJ/m³								
						S					21535.69								

10469

0.0326 GJ/m3

0.284 0.35

2976.8 3664.15 10%

GEF budget

ı	n	۱
۱	-	,

			Expend	litures	
	Planned	Total	2012	2013	2014
Technical capacity development	831,525	999,094	142	637,172	361,780
 Consultants and contracts 	554,925	843,296		606,545	236,751
- Equipment	175,000	125,004			125,004
- Grant		0			
- Supplies, rental, premises, misc	101,600	30,793	142	30,627	25
Awareness and capacity	1,248,180	322,977	17,156	191,523	114,298
 Consultants and contracts 	910,700	254,266		164,730	89,536
- Equipment		0			
- Grant	86,400	4,822			4,822
- Supplies, rental, premises, misc	251,080	63,888	17,156	26,793	19,940
Pilot demonstration	1,968,245	117,015	0	47,570	69,445
 Consultants and contracts 	586,745	56,886			56,886
- Equipment		0			
- Grant	1,380,000	9,600			9,600
- Supplies, rental, premises, misc	1,500	50,529		47,570	2,959
Sustainable financing	104,100	1,159	0	0	1,159
 Consultants and contracts 	101,100	77			77
- Equipment		0			
- Grant		0			
- Supplies, rental, premises, misc	3,000	1,082			1,082
Project management	247,950	184,783	16,908	98,956	68,918
 Consultants and contracts 	190,450	161,745	15,169	84,775	61,801
- Equipment		0			
- Grant		0			
- Supplies, rental, premises, misc	57,500	23,038	1,739	14,181	7,117
Other expenditures			8,374	28,226	15,263
T	OTAL 4,400,000	1,676,890	42,580	1,003,448	630,862

⁽E)

	GEF and co-financing	Planned	Realized
			Dec 2014
1	GEF	4.40	1.68
2	MNRE (grant subsidy)	6.00	2.10
3	MNRE (in-kind)	1.35	0.65
4	Industries (cash)	6.00	12.10
5	Financial institutions	6.00	-
	Total	23.75	16.53

Special Notes: reporting on lifetime emissions avoided

Lifetime direct GHG emissions avoided: Lifetime direct GHG emissions avoided are the emissions reductions attributable to the investments made during the project's supervised implementation period, totaled over the respective lifetime of the investments.

Lifetime direct post-project emissions avoided: Lifetime direct post-project emissions avoided are the emissions reductions attributable to the investments made outside the project's supervised implementation period, but supported by financial facilities put in place by the GEF project, totaled over the respective lifetime of the investments. These financial facilities will still be operational after the project ends, such as partial credit guarantee facilities, risk mitigation facilities, or revolving funds.

Lifetime indirect GHG emissions avoided (top-down and bottom-up): indirect emissions reductions are those attributable to the long-term outcomes of the GEF activities that remove barriers, such as capacity building, innovation, catalytic action for replication.

Please refer to the Manual for Calculating GHG Benefits of GEF Projects.

Manual for Energy Efficiency and Renewable Energy Projects Manual for Transportation Projects

For LULUCF projects, the definitions of "lifetime direct and indirect" apply. Lifetime length is defined to be 20 years, unless a different number of years is deemed appropriate. For emission or removal factors (tonnes of CO2eq per hectare per year), use IPCC defaults or country specific factors.

General Data	Target	Notes
	at CEO Endorsement	
Project Title	Market Development & Promo	otion of Solar Concentrators based Process Heat Applications in India
GEF ID	4134	
Agency Project ID	4284	
Country	India	
Region	SAR	
GEF Agency	UNDP	
Date of Council/CEO Approval	January 20, 2010	Month DD, YYYY (e.g., May 12, 2010)
GEF Grant (US\$)	4,400,000	
Date of submission of the tracking tool	May 30, 2011	Month DD, YYYY (e.g., May 12, 2010)
Is the project consistent with the priorities identified in National Communications,	1	
Technology Needs Assessment, or other Enabling Activities under the UNFCCC?	1	Yes = 1, No = 0
Is the project linked to carbon finance?	0	Yes = 1, No = 0
Cofinancing expected (US\$)	19,350,000	

Objective 1: Transfer of Innovative Technologies

National innovation and technology transfer policy	Yes = 1, No = 0
Innovation and technology centre and network	Yes = 1, No = 0
Applied R&D support	Yes = 1, No = 0
South-South technology cooperation	Yes = 1, No = 0
North-South technology cooperation	Yes = 1, No = 0
Intellectual property rights (IPR)	Yes = 1, No = 0
Information dissemination	Yes = 1, No = 0
Institutional and technical capacity building	Yes = 1, No = 0
Other (please specify)	
Number of innovative technologies demonstrated or deployed	
e specify three key technologies for demonstration or deployment	
Area of technology 1	
Type of technology 1	specify type of technology
Area of technology 2	
Type of technology 2	specify type of technology
Area of technology 3	
Type of technology 3	specify type of technology
Status of technology demonstration/deployment	 no suitable technologies are in place technologies have been identified and assessed technologies have been demonstrated on a pilot basis technologies have been deployed technologies have been diffused widely with investments technologies have reached market potential
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime direct post-project GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (bottom-up)	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (top-down)	tonnes CO2eg (see Special Notes above)

Dbjective 2: Energy Efficiency	
Please specify if the project targets any of the following areas	
Lighting	Yes = 1. No = 0
Appliances (white goods)	Yes = 1, No = 0
Equipment	Yes = 1. No = 0
Cook stoves	Yes = 1, No = 0
Existing building	Yes = 1, No = 0
New building	Yes = 1, No = 0
Industrial processes	Yes = 1, No = 0
Synergy with phase-out of ozone depleting substances	Yes = 1, No = 0
Other (please specify)	
Policy and regulatory framework	0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
stablishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
Capacity building	0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
	MJ (Million Joule, IEA unit converter:
Lifetime energy saved	http://www.iea.org/stats/unit.asp) Fuel savings should be converted to energy savings by using the calorific value of the specific fuel. End-use electricity savings sho be converted to energy savings by using the conversion factor for the specific supply and distribution system. These energy savings
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime direct post-project GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (bottom-up)	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (top-down)	tonnes CO2eg (see Special Notes above)

Objective 3: Renewable Energy		
lease specify if the project includes any of the following areas Heat/thermal energy production	1	Yes = 1. No = 0
On-grid electricity production	0	Yes = 1, No = 0
Off-grid electricity production	0	Yes = 1, No = 0
	0	103 - 1, 100 - 0
		0: not an objective/component
		1: no policy/regulation/strategy in place
Policy and regulatory framework	4	2: policy/regulation/strategy discussed and proposed
Policy and regulatory framework	-	3: policy/regulation/strategy proposed but not adopted
		4: policy/regulation/strategy adopted but not enforced
		5: policy/regulation/strategy enforced
		0: not an objective/component
		1: no facility in place
Establishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	2	2: facilities discussed and proposed
		3: facilities proposed but not operationalized/funded
		4: facilities operationalized/funded but have no demand
		5: facilities operationalized/funded and have sufficient demand
		0: not an objective/component
		1: no capacity built
Capacity building	4	2: information disseminated/awareness raised
		3: training delivered
		4: institutional/human capacity strengthened
		5: institutional/human capacity utilized and sustained
nstalled capacity per technology directly resulting from the project		
Wind		MW
Biomass		MW el (for electricity production)
Biomass		MW th (for thermal energy production)
Geothermal		MW el (for electricity production)
Geothermal		MW th (for thermal energy production)
Hydro		MW
Photovoltaic (solar lighting included)		MW
Solar thermal heat (heating, water, cooling, process)	31.50	
Solar thermal power		MW el (for electricity production)
Marine power (wave, tidal, marine current, osmotic, ocean thermal)		MW
ifetime energy production per technology directly resulting from the project (IEA unit cor	verter: http://www.iea.org/s	tats/unit.asp)
Wind		MWh
Biomass		MWh el (for electricity production)
Biomass		MWh th (for thermal energy production)
Geothermal		MWh el (for electricity production)
Geothermal Geothermal		MWh th (for thermal energy production)
Geothermal Hydro		MWh th (for thermal energy production) MWh
Geothermal Hydro Photovoltaic (solar lighting included)		MWh th (for thermal energy production) MWh MWh
Geothermal Hydro	919,800.00	MWh th (for thermal energy production) MWh MWh) MWh th (for thermal energy production)
Geothermal Hydro Photovoltaic (solar lighting included) Solar thermal heat (heating, water, cooling, process) Solar thermal power	919,800.00	MWh th (for thermal energy production) MWh MWh MWh (for thermal energy production) MWh el (for electricity production)
Geothermal Hydro Photovoltaic (solar lighting included) Solar thermal heat (heating, water, cooling, process)	919,800.00	MWh th (for thermal energy production) MWh MWh) MWh th (for thermal energy production)
Geothermal Hydro Photovoltaic (solar lighting included) Solar thermal heat (heating, water, cooling, process) Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal)		MWh th (for thermal energy production) MWh MWh MWh th (for thermal energy production) MWh el (for electricity production) MWh
Geothermal Hydro Photovoltaic (solar lighting included) Solar thermal heat (heating, water, cooling, process) Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal) Lifetime direct GHG emissions avoided		MWh th (for thermal energy production) MWh MWh MWh th (for thermal energy production) MWh el (for electricity production) MWh Otonnes CO2eq (see Special Notes above)
Geothermal Hydro Photovoltaic (solar lighting included) Solar thermal heat (heating, water, cooling, process) Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal) Lifetime direct GHG emissions avoided Lifetime direct post-project GHG emissions avoided	315,000	MWh th (for thermal energy production) MWh MWh MWh MWh th (for thermal energy production) MWh el (for electricity production) MWh tonnes CO2eq (see Special Notes above) tonnes CO2eq (see Special Notes above)
Geothermal Hydro Photovoltaic (solar lighting included) Solar thermal heat (heating, water, cooling, process) Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal) Lifetime direct GHG emissions avoided	315,000 - 945,000	MWh th (for thermal energy production) MWh MWh MWh th (for thermal energy production) MWh el (for electricity production) MWh Otonnes CO2eq (see Special Notes above)

$V_{00} = 1$ No = 0
Yes = 1, No = 0
Yes = 1, No = 0
Yes = 1, No = 0
Yes = 1, No = 0
0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
km
km
tonnes CO2eq (see Special Notes above)
tonnes CO2eq (see Special Notes above)
tonnes CO2eq (see Special Notes above) tonnes CO2eq (see Special Notes above)

Area of activity directly resulting from the project	
Conservation and enhancement of carbon in forests, including agroforestry	ha
Conservation and enhancement of carbon in nonforest lands, including peat land	ha
Avoided deforestation and forest degradation	ha
Afforestation/reforestation	ha
Good management practices developed and adopted	0: not an objective/component 1: no action 2: developing prescriptions for sustainable management 3: development of national standards for certification 4: some of area in project certified 5: over 80% of area in project certified
Carbon stock monitoring system established	0: not an objective/component 1: no action 2: mapping of forests and other land areas 3: compilation and analysis of carbon stock information 4: implementation of science based inventory/monitoring system 5: monitoring information database publicly available
Lifetime direct GHG emission avoided	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emission avoided	tonnes CO2eq (see Special Notes above)
Lifetime direct carbon sequestration	
Lifetime indirect carbon sequestration	tonnes CO2eq (see Special Notes above)

Objective 6: Enabling Activities

Please specify the number of Enabling Activities for the project (for a multiple country project, please put the number of countries/assessments)								
National Communication								
Technology Needs Assessment								
Nationally Appropriate Mitigation Actions								
Other								
Does the project include Measurement, Reporting and Verification (MRV) activities?		Yes = 1, No = 0						

Special Notes: reporting on lifetime emissions avoided

Lifetime direct GHG emissions avoided: Lifetime direct GHG emissions avoided are the emissions reductions attributable to the investments made until the mid-term evaluation, totaled over the respective lifetime of the investments.

Please refer to the Manual for Calculating GHG Benefits of GEF Projects.

Manual for Energy Efficiency and Renewable Energy Projects

Manual for Transportation Projects

For LULUCF projects, the definition of "lifetime direct" applies. Lifetime length is defined to be 20 years, unless a different number of years is deemed appropriate. For emission or removal factors (tonnes of CO2eq per hectare per year), use IPCC defaults or country specific factors.

General Data	Results	Notes
	at Mid-term Evaluation	
Project Title	Market Development & Prom	notion of Solar Concentrators based Process Heat Applications in India
GEF ID	413	4
Agency Project ID	428	4
Country	India	
Region	SAR	
GEF Agency	UNDP	
Date of Council/CEO Approval	January 20, 201	0 Month DD, YYYY (e.g., May 12, 2010)
GEF Grant (US\$)	4,400,00	
Date of submission of the tracking tool	May 30, 201	1 Month DD, YYYY (e.g., May 12, 2010)
		_
Is the project consistent with the priorities identified in National Communications,		
Technology Needs Assessment, or other Enabling Activities under the UNFCCC?		Yes = 1, No = 0
Is the project linked to carbon finance?		Yes = 1, No = 0
Cumulative cofinancing realized (US\$)		
		additional resources means beyond the cofinancing committed at
Cumulative additional resources mobilized (US\$)		CEO endorsement

Objective 1: Transfer of Innovative Technologies

National innovation and technology transfer policy	Yes = 1, No = 0
Innovation and technology centre and network	Yes = 1, No = 0
Applied R&D support	Yes = 1, No = 0
South-South technology cooperation	Yes = 1, No = 0
North-South technology cooperation	Yes = 1, No = 0
Intellectual property rights (IPR)	Yes = 1, No = 0
Information dissemination	Yes = 1, No = 0
Institutional and technical capacity building	Yes = 1, No = 0
Other (please specify)	
Number of innovative technologies demonstrated or deployed	
specify three key technologies for demonstration or deployment	
Area of technology 1	
Type of technology 1	specify type of technology
Area of technology 2	
Type of technology 2	specify type of technology
Area of technology 3	
Type of technology 3	specify type of technology
Status of technology demonstration/deployment	0: no suitable technologies are in place 1: technologies have been identified and assessed 2: technologies have been demonstrated on a pilot basis 3: technologies have been deployed 4: technologies have been diffused widely with investments 5: technologies have reached market potential
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)

Dbjective 2: Energy Efficiency	
lease specify if the project targets any of the following areas	Yes = 1. No = 0
Lighting Appliances (white goods)	Yes = 1, No = 0 Yes = 1. No = 0
	Yes = 1, No = 0 Yes = 1, No = 0
Equipment Cook stoves	Yes = 1, No = 0
Existing building	Yes = 1, No = 0
New building	Yes = 1, No = 0
Industrial processes	Yes = 1, No = 0
Synergy with phase-out of ozone depleting substances	Yes = 1, No = 0
Other (please specify)	
Policy and regulatory framework	0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
Establishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
Capacity building	0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
Lifetime energy saved	MJ (Million Joule, IEA unit converter: http://www.iea.org/stats/unit.asp) Fuel savings should be converted to energy savings by using the n calorific value of the specific fuel. End-use electricity savings shou be converted to energy savings by using the conversion factor for the specific supply and distribution system. These energy savings are then totaled over the respective lifetime of the investments.
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)

bjective 3: Renewable Energy		
ease specify if the project includes any of the following areas		
Heat/thermal energy production		Yes = 1, No = 0
On-grid electricity production		Yes = 1, No = 0
Off-grid electricity production		Yes = 1, No = 0
Policy and regulatory framework	4	0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
istablishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	2	0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
Capacity building	4	0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
stalled capacity per technology directly resulting from the project Wind		MW
Biomass		MW el (for electricity production)
Biomass		MW th (for thermal energy production)
Geothermal		MW el (for electricity production)
Geothermal		MW th (for thermal energy production)
Hydro		MW
Photovoltaic (solar lighting included)		MW
Solar thermal heat (heating, water, cooling, process)	11 50	MW th (for thermal energy production, $1m^2 = 0.7kW$)
Solar thermal near (nearing, water, cooling, process)	11.50	MW el (for electricity production)
Marine power (wave, tidal, marine current, osmotic, ocean thermal)		MW
etime energy production per technology directly resulting from the project (IEA unit co	nverter: http://www.iea.org/st	
Wind	,	MWh
Biomass		MWh el (for electricity production)
Biomass		MWh th (for thermal energy production)
Geothermal		MWh el (for electricity production)
Geothermal		MWh th (for thermal energy production)
Hydro		MWh
Photovoltaic (solar lighting included)		MWh
Solar thermal heat (heating, water, cooling, process)	210.872.00	MWh th (for thermal energy production)
Solar thermal power	,	MWh el (for electricity production)
Marine energy (wave, tidal, marine current, osmotic, ocean thermal)		MWh
Lifetime direct GHG emissions avoided	104,933	tonnes CO2eq (see Special Notes above)

se specify if the project targets any of the following areas	
Bus rapid transit	Yes = 1, No = 0
Other mass transit (e.g., light rail, heavy rail, water or other mass transit;	
excluding regular bus or minibus)	Yes = 1, No = 0
Logistics management	Yes = 1, No = 0
Transport efficiency (e.g., vehicle, fuel, network efficiency)	Yes = 1, No = 0
Non-motorized transport (NMT)	Yes = 1, No = 0
Travel demand management	Yes = 1, No = 0
omprehensive transport initiatives (Involving the coordination of multiple strategies	
from different transportation sub-sectors)	Yes = 1, No = 0
Sustainable urban initiatives	Yes = 1, No = 0
Policy and regulatory framework	0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
blishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
Capacity building	0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
Length of public rapid transit (PRT)	km
Length of non-motorized transport (NMT)	km
Number of lower GHG emission vehicles	
Number of people benefiting from the improved transport and urban systems	

Objective 5: LULUCF	
Area of activity directly resulting from the project	
Conservation and enhancement of carbon in forests, including agroforestry	n ha ha
Conservation and enhancement of carbon in nonforest lands, including peat land	ha
Avoided deforestation and forest degradation	ha
Afforestation/reforestation	ha
Good management practices developed and adopted	0: not an objective/component 1: no action 2: developing prescriptions for sustainable management 3: development of national standards for certification 4: some of area in project certified 5: over 80% of area in project certified
Carbon stock monitoring system established	0: not an objective/component 1: no action 2: mapping of forests and other land areas 3: compilation and analysis of carbon stock information 4: implementation of science based inventory/monitoring system 5: monitoring information database publicly available
Lifetime direct GHG emission avoided	
Lifetime direct carbon sequestration	tonnes CO2eq

Objective 6: Enabling Activities

Please specify the number of Enabling Activities for the project (for a multiple country project, please put the number of countries/assessments)		
National Communication		
Technology Needs Assessment		
Nationally Appropriate Mitigation Actions		
Other		
Does the project include Measurement, Reporting and Verification (MRV) activities?		Yes = 1, No = 0

Special Notes: reporting on lifetime emissions avoided

Lifetime direct GHG emissions avoided: Lifetime direct GHG emissions avoided are the emissions reductions attributable to the investments made during the project's supervised implementation period, totaled over the respective lifetime of the investments.

Lifetime direct post-project emissions avoided: Lifetime direct post-project emissions avoided are the emissions reductions attributable to the investments made outside the project's supervised implementation period, but supported by financial facilities put in place by the GEF project, totaled over the respective lifetime of the investments. These financial facilities will still be operational after the project ends, such as partial credit guarantee facilities, risk mitigation facilities, or revolving funds.

Lifetime indirect GHG emissions avoided (top-down and bottom-up): indirect emissions reductions are those attributable to the long-term outcomes of the GEF activities that remove barriers, such as capacity building, innovation, catalytic action for replication.

Please refer to the Manual for Calculating GHG Benefits of GEF Projects.

Manual for Energy Efficiency and Renewable Energy Projects

Manual for Transportation Projects

For LULUCF projects, the definitions of "lifetime direct and indirect" apply. Lifetime length is defined to be 20 years, unless a different number of years is deemed appropriate. For emission or removal factors (tonnes of CO2eq per hectare per year), use IPCC defaults or country specific factors.

General Data	Results	Notes
	at Terminal Evaluation	
Project Title		
GEF ID		
Agency Project ID		
Country		
Region		
GEF Agency		
Date of Council/CEO Approval		Month DD, YYYY (e.g., May 12, 2010)
GEF Grant (US\$)		
Date of submission of the tracking tool		Month DD, YYYY (e.g., May 12, 2010)
Is the project consistent with the priorities identified in National Communications,		
Technology Needs Assessment, or other Enabling Activities under the UNFCCC?		Yes = 1, No = 0
Is the project linked to carbon finance?		Yes = 1, No = 0
Cumulative cofinancing realized (US\$)		
Cumulative additional resources mobilized (US\$)		additional resources means beyond the cofinancing committed at CEO endorsement

Objective 1: Transfer of Innovative Technologies

National innovation and technology transfer policy	Yes = 1, No = 0
Innovation and technology centre and network	Yes = 1, No = 0
Applied R&D support	Yes = 1, No = 0
South-South technology cooperation	Yes = 1, No = 0
North-South technology cooperation	Yes = 1, No = 0
Intellectual property rights (IPR)	Yes = 1, No = 0
Information dissemination	Yes = 1, No = 0
Institutional and technical capacity building	Yes = 1, No = 0
Other (please specify)	
Number of innovative technologies demonstrated or deployed	
pecify three key technologies for demonstration or deployment	
Area of technology 1	
Type of technology 1	specify type of technology
Area of technology 2	
Type of technology 2	specify type of technology
Area of technology 3	
Type of technology 3	specify type of technology
Status of technology demonstration/deployment	 no suitable technologies are in place technologies have been identified and assessed technologies have been demonstrated on a pilot basis technologies have been deployed technologies have been diffused widely with investments technologies have reached market potential
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime direct post-project GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (bottom-up)	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (top-down)	tonnes CO2eq (see Special Notes above)

Dejective 2: Energy Efficiency	
Please specify if the project targets any of the following areas	Yes = 1. No = 0
Appliances (white goods)	Yes = 1, No = 0
Equipment	Yes = 1, No = 0
Cook stoves	Yes = 1, No = 0
Existing building	Yes = 1, No = 0
New building	Yes = 1, No = 0
Industrial processes	Yes = 1, No = 0
Synergy with phase-out of ozone depleting substances	Yes = 1, No = 0
Other (please specify)	165 - 1,140 - 0
Other (please specify)	
Policy and regulatory framework	0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
Establishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
Capacity building	0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
	MJ (Million Joule, IEA unit converter:
Lifetime energy saved	http://www.iea.org/stats/unit.asp) Fuel savings should be converted to energy savings by using the n calorific value of the specific fuel. End-use electricity savings shou be converted to energy savings by using the conversion factor for the specific supply and distribution system. These energy savings
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime direct post-project GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (bottom-up)	tonnes CO2eg (see Special Notes above)
Lifetime indirect GHG emissions avoided (top-down)	tonnes CO2eg (see Special Notes above)

Objective 3: Renewable Energy	
lease specify if the project includes any of the following areas	
Heat/thermal energy production	Yes = 1, No = 0
On-grid electricity production	Yes = 1, No = 0
Off-grid electricity production	Yes = 1, No = 0
	0: not an objective/component
	1: no policy/regulation/strategy in place
Policy and regulatory framework	2: policy/regulation/strategy discussed and proposed
	3: policy/regulation/strategy proposed but not adopted
	4: policy/regulation/strategy adopted but not enforced
	5: policy/regulation/strategy enforced
	0: not an objective/component
	1: no facility in place
Establishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	2: facilities discussed and proposed
	3: facilities proposed but not operationalized/funded
	4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
	0: not an objective/component
	1: no capacity built
	2: information disseminated/awareness raised
Capacity building	3: training delivered
	4: institutional/human capacity strengthened
	5: institutional/human capacity utilized and sustained
nstalled capacity per technology directly resulting from the project	
Wind	MW
Biomass	MW el (for electricity production)
Biomass	MW th (for thermal energy production)
Geothermal	MW el (for electricity production)
Geothermal	MW th (for thermal energy production)
Hydro	MW
Photovoltaic (solar lighting included)	MW
Solar thermal heat (heating, water, cooling, process)	MW th (for thermal energy production, 1m ² = 0.7kW)
Solar thermal power	MW el (for electricity production)
Marine power (wave, tidal, marine current, osmotic, ocean thermal)	MW
ifetime energy production per technology directly resulting from the project (IEA unit conv	verter: http://www.iea.orn/stats/unit.asp)
Wind	MWh
Biomass	MWh el (for electricity production)
Biomass	MWh th (for thermal energy production)
Geothermal	MWh el (for electricity production)
Geothermal	MWh th (for thermal energy production)
Hydro	MWh
Photovoltaic (solar lighting included)	MWh
Solar thermal heat (heating, water, cooling, process)	MWh th (for thermal energy production)
	MWh el (for electricity production)
Solar thermal power	
	MWh
Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal)	MWh
Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal) Lifetime direct GHG emissions avoided	MWh tonnes CO2eq (see Special Notes above)
Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal) Lifetime direct GHG emissions avoided Lifetime direct post-project GHG emissions avoided	MWh tonnes CO2eq (see Special Notes above) tonnes CO2eq (see Special Notes above)
Solar thermal power Marine energy (wave, tidal, marine current, osmotic, ocean thermal) Lifetime direct GHG emissions avoided	MWh tonnes CO2eq (see Special Notes above)

e specify if the project targets any of the following areas Bus rapid transit	Yes = 1, No = 0
Other mass transit (e.g., light rail, heavy rail, water or other mass transit;	
excluding regular bus or minibus)	Yes = 1, No = 0
Logistics management	Yes = 1, No = 0
Transport efficiency (e.g., vehicle, fuel, network efficiency)	Yes = 1, No = 0
Non-motorized transport (NMT)	Yes = 1, No = 0
Travel demand management	Yes = 1, No = 0
nprehensive transport initiatives (Involving the coordination of multiple strategies	
from different transportation sub-sectors)	Yes = 1, No = 0
Sustainable urban initiatives	Yes = 1, No = 0
Policy and regulatory framework	0: not an objective/component 1: no policy/regulation/strategy in place 2: policy/regulation/strategy discussed and proposed 3: policy/regulation/strategy proposed but not adopted 4: policy/regulation/strategy adopted but not enforced 5: policy/regulation/strategy enforced
lishment of financial facilities (e.g., credit lines, risk guarantees, revolving funds)	0: not an objective/component 1: no facility in place 2: facilities discussed and proposed 3: facilities proposed but not operationalized/funded 4: facilities operationalized/funded but have no demand 5: facilities operationalized/funded and have sufficient demand
Capacity building	0: not an objective/component 1: no capacity built 2: information disseminated/awareness raised 3: training delivered 4: institutional/human capacity strengthened 5: institutional/human capacity utilized and sustained
Length of public rapid transit (PRT)	km
Length of non-motorized transport (NMT)	km
Number of lower GHG emission vehicles	NII
Number of people benefiting from the improved transport and urban systems	
rames, si people sololiting nom the improved transport and distant systems	
Lifetime direct GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime direct post-project GHG emissions avoided	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (bottom-up)	tonnes CO2eq (see Special Notes above)
Lifetime indirect GHG emissions avoided (top-down)	tonnes CO2eg (see Special Notes above)

Conservation and enhancement of carbon in forests, including agroforestry	ha		
Conservation and enhancement of carbon in nonforest lands, including beat land	ha		
Avoided deforestation and forest degradation	ha		
Afforestation/reforestation	ha		
Good management practices developed and adopted	0: not an objective/component 1: no action 2: developing prescriptions for sustainable management 3: development of national standards for certification 4: some of area in project certified 5: over 80% of area in project certified		
Carbon stock monitoring system established	0: not an objective/component 1: no action 2: mapping of forests and other land areas 3: compilation and analysis of carbon stock information 4: implementation of science based inventory/monitoring system 5: monitoring information database publicly available		
Lifetime direct GHG emission avoided	tonnes CO2eq (see Special Notes above)		
Lifetime indirect GHG emission avoided	tonnes CO2eq (see Special Notes above)		
Lifetime direct carbon sequestration	tonnes CO2eq (see Special Notes above)		
Lifetime indirect carbon sequestration	tonnes CO2eq (see Special Notes above)		

Objective 6: Enabling Activities

Please specify the number of Enabling Activities for the project (for a multiple country project, please put the number of countries/assessments)				
National Communication				
Technology Needs Assessment				
Nationally Appropriate Mitigation Actions				
Other				
Does the project include Measurement, Reporting and Verification (MRV) activities?		Yes = 1, No = 0		