1. Project Performance

a) Please state the expected Output of the Project, set indicators and corresponding CP Outcome (as per project document/AWP):

COMPONENT 1: Technology transfer and knowledge development in support of innovation in EE water management and SLM in agriculture

OUTPUT 1.1: Technology proving site and educational platform for low-water irrigation and SLM in agricultural croplands developed and implemented

Output indicators 1.1.

- Reduction of water used for specific soil types
- Normalised energy consumption reduced compared with average values for similar soil types
- Area of land protected or reclaimed from salinisation as a result of demonstration projects

Output targets 1.1.

- Demonstration project achieves comparable yields with 40-50 percent less irrigation water consumption than specified by norms.

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Second year of cultivation reconfirmed significant positive outcomes of low-water irrigation systems tested at demonstration site. Yield and water consumption figures vary by crop types and irrigation technologies used. Crops harvested with drip and sprinkler irrigation consumed in average over 60% less water for unit of product if compared with traditional furrow irrigation.

- Normalized energy consumption reduced by 30 percent relative to similar sites.

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?
Based on the results of the second year of field tests at Geokdepe demonstration site, application of low-water irrigation systems along with water saving piping system and energy saving pumping equipment reduced by around 70 percent normalized energy consumption relative to similar sites with traditional types of irrigation and infrastructure.

- 300 ha of land protected or reclaimed from salinisation as a result of demonstration projects

a) Were the indicators and output achieved? Yes □ No □ Partially ■

b) If no or partially, please explain why?

Based on the collected soil samples, Geokdepe site soils are classified from slightly and moderately saline (about 5%) to strongly and very strongly saline (remaining 95%). The project took certain measures to combat salinization at Geokdepe 145 ha plot through improvements in drainage canals in 2016, construction of piped irrigation network in 2017, construction of low-water irrigation systems and planting some crops irrigated with efficient irrigation technologies in 2018. The project experts also provide advisory support and trainings to local farmers working at research site and other neighbouring farms on efficient water use and SLM techniques. All these activities will contribute to remediation of lands from salinization. Land rehabilitation and salinity reduction process normally takes several years, so project will be monitoring salinity level throughout the project lifetime.

OUTPUT 1.2: Audits and servicing of pumps of various sizes in both interdistrict water networks and on farms in all velayats of Turkmenistan

Output indicator 1.2. Number of pump audits completed by project (total and diesel pumps) and energy saving achieved by replacement and/or fixing of old pumps

Output targets 1.2:

- At least 100 pump audits completed by project, including audits of 25 diesel pumps

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Project experts in close coordination with and assistance of Ministry of Agriculture and Water Economy conducted audit of efficiency and energy consumption of 121 pumps including 44 diesel and 77 electric pumps in 2017. International experts estimated old pumps to be around 30-35% less efficient compared to the nominal design efficiencies.

- 20 percent energy saving achieved by replacement and/or fixing of old pumps

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Based on the recommendations of international consultants on energy audit of pumps and in consultation with key national partner, the project replaced 5 physically worn and technologically obsolete pumps by brand new energy efficient ones in 2019. New pumps will go through audit to identify direct energy savings and prepare recommendations for the government for replication via state or private investments. Based on the average energy specifications of baseline pump-sets (about 100 kW) and new pumps (40 kW), it is expected to achieve over 50% energy saving.
OUTPUT 1.3: Renewable-energy applications of water pumping and purification in remote pasture areas

Output indicator 1.3. Number of people directly benefiting from measures on renewable-energy water supply in remote locations

Output target 1.3.: 1100 people directly benefiting from measures on renewable-energy water supply in remote locations

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

The project completed installation of photovoltaic systems (PV) for water pumping and purification in the villages of Byori, Yel and Bashkak, Akhal velayat with total number of residents over 1200 people.

COMPONENT 2: Scaling-up investment in improved water management infrastructure to reduce water losses, energy use, and land degradation

OUTPUT 2.1: Installation of pipeline and/or channel lining for municipal water supply in Kaakhka, replacing unlined channels and wells, with documentation of results and presentation of recommendations and cost analysis for replication

Output indicators 2.1.

- Reduction in water loss between withdrawal and entrance point of the Kaakhka town Water Treatment facility
- Direct energy savings due to decommissioning of up to 41 wells
- Number of similar projects initiated in in other similar (or mountainous areas) districts of Akhal and Balkan velayats of Turkmenistan

Output targets 2.1.

- Less than 5 percent of water is lost between withdrawal and end use in Kaakhka.

a) Were the indicators and output achieved? Yes ■ No □ Partially □

15km long water supply pipeline for the Kaakhka district successfully launched in 2018. It practically eliminated water loss between withdrawal and water treatment facilities.

- Water supply reliability is increased, while 41 wells can be decommissioned. Direct energy savings of 486 MWh per year, and reduction of associated GHG emissions by 240 tonnes.

a) Were the indicators and output achieved? Yes ■ No □ Partially □

Operation of the new gravity-driven water supply system since April 2018 has shown that decommissioning of the entire set of around 40 well pumps, that had been supplying the town with water, is not possible due to variable water availability in the river that the new system draws water from. During low-water levels in the river (mostly Summer months), part of the well pumps needs to be kept running to ensure that the town gets sufficient water.

Original target set for this activity in the approved project document was 11,250 tCO₂, which was to be generated through complete decommissioning of 41 electric pumps with average rated capacity of 1.5 kW during the project lifetime. Since the actual average capacity of the well pumps appears to be substantially larger (9.5 kW) and with half of pumps remaining in operation on average across the year,
the resulting estimated GHG mitigation impact appears to be larger than the originally targeted in the project document. Thus, based on the calculations of International Expert on GHG emission reduction, Kaahka water pipeline result in annual energy savings of about 1000 MWh, and reduction of associated GHG emissions by 785 tCO2/year.

- At least 1 similar project initiated in other similar (or mountainous areas) districts of Akhal and Balkan velayats of Turkmenistan.

a) Were the indicators and output achieved? Yes □ No□ Partially ■

b) If no or partially, please explain why?

Preliminary estimates display up to 50% of water economy, with lifetime direct GHG emission reductions from operation of the combined water supply system in Kaakhka town are anticipated at 15,694 tCO2. Given its high replication potential in the country, a dialogue with the government is now underway to upscale this water-energy nexus effect.

OUTPUT 2.2: Lining of interdistrict canals for reduction of water losses and land salinization, including various technologies

Output indicator 2.2.

- Number of production lines established (from at least 3 potential options) to produce materials for modern canal linings and pipes
- Kilometres of canals newly lined

Output target 2.2:

- Testing of at least three types of materials for canal linings and pipes. Initiation of mass production of new materials and/or cost reduction by 20 percent of mass-producing existing materials, involving at least two types of products.

a) Were the indicators and output achieved? Yes □ No □ Partially ■

b) If no or partially, please explain why?

Based on the recommendations of National and International Experts in Irrigation Canals, the project started procurement of materials and equipment for initiation of production of two lining materials. The forms for production of pre-cast hexagonal concrete slabs were already purchased and supplied to Concrete Plant of State Water Committee, the project’s key national partner. Tender on procurement, supply and installation of an extrusion line to produce high-density polyethylene (HDPE) film/membrane is under evaluation now. The project is also planning to hire IC Specialist on Polymers and Extrusion who will guide and provide technical support to project team during the establishment of production of polymer materials at the plant.

- Domestic production and installation expanded by 50 percent for at least two types of technologies for canal linings, pipelines, or other materials to reduce losses of water in transit. New lining of at least 400 km of canals. Reduction of water losses from newly lined canals by more than 50 percent.

a) Were the indicators and output achieved? Yes □ No ■ Partially □

b) If no or partially, please explain why?
The project plans to establish domestic production of lining materials by the end of 2020. Lining of irrigation canals with the new materials may happen in 2021 the earliest.

COMPONENT 3: Planning and capacity-building at the regional and local levels, plus evaluation and compilation of lessons learned

OUTPUT 3.1: Technology Action Plans, including consideration of SLM, developed and implemented at the regional and local levels

Output indicators 3.1. Number of regional Integrated Water Distribution Plans developed and formally submitted for approval

Output targets 3.1. At least 3 velayat Integrated Water Distribution Plans developed and submitted for approval, recommendations are developed for other 2 velayats (Lebap and Balkan)

a) Were the indicators and output achieved? Yes ☐ No ☐ Partially ■

b) If no or partially, please explain why?

The project developed methodology on development of inter-farm water use plans and submitted to relevant agencies, Water Committee and Agriculture Ministry, for their feedback in the end of 2019. The project plans to test the methodology on the farms of selected private farmers and district-level water agencies. The outcome of these activities will be used for further works on development of integrated regional sustainable water management plans with consideration of SLM at the level of etraps (districts). Furthermore, initial results of low-water irrigation demonstrations complemented with land management techniques at Geokdepe green polygon can serve as foundation for development of Water Distribution Plans with proven water and land management practices.

OUTPUT 3.2: Education and direct training provided to water-management system designers, local water management staff and farmers in all regions of Turkmenistan on pump maintenance, irrigation, and other aspects of efficient water management and SLM

Output indicators 3.2.

- Key stakeholders/institutions with relevant mandates involved/trained jointly by the Project
- 90% positive feedback from training participants

Output target 3.2. Expanded training delivered annually in all five velayats on integrated water management, to a total of 100 specialists and 300 farmers by the end of the project period

a) Were the indicators and output achieved? Yes ■ No ☐ Partially □

b) If no or partially, please explain why?

Over 280 national specialists representing State Water Committee, Ministry of Agriculture and Nature Protection, Water Design Institute and farmers have been trained locally and abroad since the beginning of the project in various topics related to rational water management, energy efficient irrigation techniques, pump maintenance and SLM. Positive feedback rate from training participants is around 93%. Series of local and international trainings focused on low-water irrigation technologies, energy efficient pump operation, canal seepage control and various aspects of SLM will be arranged in 2020 for nearly 100 national water and agriculture experts and farmers.
OUTPUT 3.3: Project evaluation and compilation of lessons learned

No indicators and targets are specified in RRF for the Output 3.3 in the project document.

a) Were the indicators and output achieved?
 Yes ☐ No ☐ Partially ■

b) If no or partially, please explain why?

Mid-Term evaluation took place in mid-2018. The project progress was recognized and delays in project realization were noted with useful recommendations on further project implementation.

The project experts carry out site-specific technical evaluations of energy savings, water savings and land melioration under specific outputs. The project also conducts regular evaluation of GHG emission reduction from the pilot projects. GHG impact will be estimated and reported accordingly.

Lessons learned are continuously documented by project experts and discussed at meetings with project stakeholders.

COMPONENT 4: National policy and regulatory framework established for integrated water resource management

OUTPUT 4.1: Standards and regulations for pump performance and maintenance adopted and enforced

Output indicator 4.1: Number of regulations, norms, and/or standards developed and adopted in support of the new Water Code

Output target 4.1: At least 3 acts related to pump audits, crop-specific irrigation norms, and water/energy saving practices (incl. irrigation infrastructure) to lead to GHG emission reduction developed and adopted in support of the new Water Code.

a) Were the indicators and output achieved?
 Yes ☐ No ☐ Partially ■

b) If no or partially, please explain why?

Based on detailed inventory of legislation, as well as mandates of relevant governmental institution in the field of energy efficiency, irrigation water use, GHG emission reduction developed in 2016, in 2017 the project developed four regulatory acts to support Water Code, including (i) operational regulations for pump stations; (ii) regulation for scheduled preventive maintenance and repair of water systems and facilities; (iii) technical regulations of irrigation infrastructure; and (iv) technical regulations of drainage infrastructure. Upon receipt of comments and inputs from state agencies, the project updated the sub-legislative acts and submitted to State Committee on Water Management for approval in 2019.

Besides, the project submitted 1st draft of SNT (national construction norms and standards) on Land-reclamation systems and facilities to the Ministry of Construction. The Construction Ministry will consult with respective state agencies before submission of the SNT to the Parliament. New building code if approved will allow national organizations to use modern norms and standards in the design and construction of water infrastructure facilities incl. energy efficient pump units, drip and sprinkler irrigation systems to increase rational use of water and promote reduction of GHG emission.

Furthermore, the project plans to develop crop-specific irrigation norms based on results of field research works started in Geokdepe site in 2018. However, testing should be carried out for at least
three years to allow project experts to develop evidence-based recommendations on revision of irrigation norms of certain crops.

OUTPUT 4.2: Policy framework for measuring water consumption, monitoring energy consumption in the water sector, and making the transition to end-use tariffs developed and adopted

No indicators and targets are specified in RRF for the Output 4.2 in the project document.

In 2018 the project initiated discussions among water sector experts on approaches to develop policy framework for metering water consumption, monitoring energy consumption in the water sector, and transition to end-use tariffs. Work on development of regional Integrated Water Distribution Plans (Output 3.1) will also contribute to creation of enabling conditions for transition to end-use tariff system.

The project established water metering systems at all of the project pilot sites.

OUTPUT 4.3: Policy and state budget framework for widespread deployment of efficiency improvements to irrigation and water infrastructure adopted and implemented

Output indicator 4.3: There is a formal commitment of the government to allocate resources for demonstrated by the project technologies (e.g. inclusion in state-funded programmes and budgets) (Yes/No).

Output target 4.3: Yes

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

In 2019 the government adopted the National Program for the Development of Agriculture of Turkmenistan for 2019-2025, which, in addition to traditional agricultural activities, also envisages rational use of water resources, improving land reclamation techniques and other issues to improve the country's irrigated agriculture sector in the medium term. It is planned to spend 6.8 billion manat (over 1.9 billion US dollars) for the implementation of this program, mainly from the state budget of the country.

OUTPUT 4.4. Administrative reform for implementation of integrated water resource management and sustainable land management adopted and implemented

Output indicator 4.4: Programme for water measurement is developed and made operational at focus demonstrational sites.

Output target 4.4: Programme for water measurement is developed and made operational at focus demonstrational sites (Yes/No)

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Baseline data collection program for the Kaahka pilot project was prepared and initiated in 2016 through installation of water measuring devices at the source and lower stream of the open-water channel that supply drinking water to the town of Kaahka. These meters enabled the project to accurately measure and calculate the average monthly water flow and supported final decision on pipeline construction. Water metering was further improved with construction of water distribution point as part of the Kaahka water pipeline project completed in April 2018.
Testing of water measurement devices at Geokdepe demonstration site started in 2017 when piped irrigation network was built. Additional water meters were installed along with drip and sprinkler irrigation systems in June 2018. Collection of water consumption figures intensified with planting of various crops irrigated with water saving types.

In 2018 EERE project specialists discussed with national water, agriculture and legal experts potential ways of improvement/revision of agency roles for IWRM. Preliminary agreement was reached about partnership of EERE project with SCRL project and Regional Environmental Center for Central Asia (CAREC) that is planning to work on promotion of IWRM principles within its joint USAID-CAREC project “Water, education and cooperation”. In November 2019 UNDP Turkmenistan signed a three-year MoU with CAREC to strengthen synergetic cooperation between UNDP and CAREC and maximize impact in a number of areas such as policy and legal framework improvement, technology and knowledge transfer, building new skills and others.

2. Progress Reporting

a) Please summarize the main achievements during the project cycle:

The project has delivered four major strategic milestones including:

1. Firstly, in April 2018 a gravity-flow water pipeline was launched for the town of Kaakhka to save water by prevention of ground water losses, shut down the operation of around 40 water pumps and reduce associated GHG emissions. The initiative has both mitigation and adaptation effect. Given that the country has a number of other settlements in similar conditions, potential for replication is high. The currently ongoing monitoring of the new pipe operation will serve as grounds for entering into a dialogue with national counterparts with regard to possible upscale of this measure.

2. Secondly, a 145 ha research site was launched in early June 2018, with various irrigation systems and infrastructure up and running. The project has started the process of research and analysis on how these irrigation systems interact with various crop types. This multi-year process will be documented, with findings to be presented to Government for strategic adjustments of the countries agricultural development, including changes to be proposed in the educational sector.

3. Thirdly, the project replaced five obsolete low-efficient pumps used for water supply for irrigation purposes. Newly installed modern energy efficient pumps increased efficiency and reliability of water supply in specific rural areas. It also reduced energy consumption and associated GHG emission due to lower energy consumption of new pumps (40 kWt) compared to replaced ones (over 100 kWt) with the same productivity. It is expected that this major exercise will further lead into GHG reductions from replications in the water pumps sectors, which currently occupies one of the leading places in emissions.

4. The project also promotes innovations such as the use of renewable energy for water pumping and treatment in remote areas for household needs. In the end of 2019 the project completed installation of photovoltaic systems (PV) for water pumping and purification in the villages of Byori, Yel and Bashkak, Akhal velayat totalling over 1200 residents. It is envisaged that it will improve water availability in areas with highly limited access to water and reduce associated GHG emissions from diesel fuel used for pumps and household energy supply. It will also contribute to socio-economic growth of targeted communities due to significant money savings from free of charge solar energy versus expenses for diesel fuel and its delivery to remote villages, regular maintenance and replacement of diesel power generators.
The project developed four regulatory acts to support Water Code, including (i) operational regulations for pump stations; (ii) regulation for scheduled preventive maintenance and repair of water systems and facilities; (iii) technical regulations of irrigation infrastructure; and (iv) technical regulations of drainage infrastructure. It is expected that these regulations when approved by the State Water Committee will improve efficiency of use of water infrastructure and contribute to GHG reduction in water sector.

The project contributed substantially to the work of Water Design Institute on update of SNT (national construction norms and standards) on Land-reclamation systems and facilities to the Ministry of Construction. Water Design Institute submitted 1st draft of SNT to State Water Committee for further transfer to the Construction Ministry. New building code if approved will allow national organizations to use modern norms and standards in the design and construction of water infrastructure facilities incl. energy efficient pump units, drip and sprinkler irrigation systems to increase rational use of water and promote reduction of GHG emission.

The project demonstrated benefits of laser land levelling technology to water specialists and farmers when up to 30% water saving and 25% yield increase is attainable. As a result, in 2019 Ministry of Agriculture and Nature Protection purchased first batch of 40 units of laser land levelling equipment. The project conducted training for operators to avoid equipment breakdowns from improper operation and excessive fuel consumption.

With substantial facilitation of the project, UNDP Turkmenistan signed a three-year MoU with CAREC, international organization successfully promoting issues of environmental management and sustainable development in the Central Asia region. Synergetic cooperation between UNDP and CAREC will maximize impact in a number of areas such as policy and legal framework development, technology and knowledge transfer, building new skills and other. Besides, the project conducted negotiations with German company KSB specialising in water pumping technologies and reached preliminary agreement with the company to sign MoU with UNDP Turkmenistan in Jan 2020 with intention to install KSB equipment at various project sites to demonstrate energy efficient water metering and pumping including use of renewables.

3. Project Risks and Issues

The project Risk Log is maintained throughout the project implementation to capture potential risks to the project and associated measures to mitigate risk. The Project Manager shall maintain and update the Risk Log and ensure that risks are identified, communicated and managed effectively.

A number of potential risks are listed below.

<table>
<thead>
<tr>
<th>#</th>
<th>Description of risk</th>
<th>Type and category</th>
<th>Risk management actions</th>
<th>Current situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Government commits funds to water conservation and energy conservation at a level insufficient to achieve significant scaled-up effects. Due to the general political and financial situation of the country, the project activities might be replicated under the private financing (e.g. EE irrigation), the major part has to be financed by the State (Central or Regional) budget, especially aimed at increase of EE at the national level.</td>
<td>Political and financial</td>
<td>Even though some pilot project activities might be replicated under the private financing (e.g. EE irrigation), the major part has to be financed by the State (Central or Regional) budget, especially aimed at increase of EE at the national level.</td>
<td>Risk is increasing due to worsening economic situation in...</td>
</tr>
<tr>
<td>economic situation in the country, not enough budgetary funds might be allocated for replication of pilot project activities. Besides, growing difference between the official and market exchange rates may hamper private investments in sustainable energy and water technologies.</td>
<td>pumping stations. Therefore, general economic situation in the country is of crucial importance for scaling-up similar activities. External factors, e.g. decrease of prices (and/or sales) on natural gas and oil worldwide, may lead to the decrease of the State budget of Turkmenistan and consequently, there would be less funding available for the enhancing sustainable energy and water management practices (installation of EE and RE technologies). To mitigate this risk, the EERE project will implement comprehensive Monitoring and Evaluation (M&E) of the pilot (demo) projects and communicate its results to all stakeholders and potential investors/beneficiaries. The focus of the materials prepared for this purpose, will be on energy savings achieved as well as cost-efficiency. In case of proper awareness raising / marketing campaign, sustainable irrigation will be put in the high priorities and its financing secured. Furthermore, tightening of foreign exchange regime by national financial authorities led to occurrence of black market rate for foreign currency which is now five times higher than official rate. Potential private investors in these technologies (mostly farmers), which have their financial resources in national currency, likely have to purchase the foreign currency at the market rates, that in turn, may make such investments financially not feasible. To mitigate this risk, the EERE project will conduct detailed financial analysis including sensitivity analysis and promote only those technologies with high IRR and NPV.</td>
<td>the country.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2. Farmers and other stakeholders resist change, complicating efforts of project to introduce new technology, practices, and Institutional | Farmers already do widely understand the importance of water conservation, and have participated enthusiastically in past projects of international organizations. This project specifically | No change |</p>
<table>
<thead>
<tr>
<th></th>
<th>norms for low-water irrigation seeks to reduce risk of stakeholder resistance through targeted outreach and training. Incentives or mandates may be included in policy efforts under Component 4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Demonstration projects need to be significantly changed because of unforeseen local technical or environmental conditions. Water management projects require careful attention to many specific technical and environmental factors, including water sources; end uses; intervening terrain; and other conditions. Each demonstration project will undergo thorough assessment of cost, technical feasibility, expected benefits, and environmental and social impact. Design of projects will be adjusted as needed to account for conditions identified during these assessments. Timetables for demonstration projects will have some flexibility built into them, to allow for needed adjustments.</td>
</tr>
<tr>
<td>4.</td>
<td>Replication of demonstration project technology and practices lags because of insufficient availability of materials and products. Efficient irrigation technology is under development in Turkmenistan, and scaling up domestic production is a priority of the Government. Canal lining technology is likely to be rather simple and not export-dependent. Demonstration projects will emphasize use of technologies and materials that are accessible in Turkmenistan. The project will assess the cost and supply flows of imported products such as pumps before recommending them for wide use.</td>
</tr>
<tr>
<td>5.</td>
<td>Reduction in end-use water consumption and increased pump performance does not automatically lead to energy savings and avoided emissions. Reduction in end-use water consumption needs to be accurately forecasted, measured, and then coordinated with upstream water management and pumping schedules. This integration is a major emphasis of the project.</td>
</tr>
<tr>
<td>6.</td>
<td>Climate change – specifically, increased average temperatures and reduced precipitation – exacerbates problems of water scarcity and land</td>
</tr>
</tbody>
</table>
Degradation, muting the benefits of the project sector are among the top of national priorities. The proposed project will help alleviate the risk of water shortage by introducing and promoting improvements in water and energy efficiency and an integrated water-energy management approach in irrigation thus leveraging win-win opportunities for climate change mitigation and adaptation.

| 7. Complexity and multi-dimensional nature of the project, which may lead to non or under delivery of some of the planned objectives and goals | Organisational | Mobilisation of stakeholders and regular engagement with all partners. Frequent engagement of project board and National Project Coordinator | Reducing |

| 8. Delays in implementation of planned activities due to lengthy internal decision-making process resulting non-delivery | Operational and Organisational | Bi-weekly meetings and discussions with the Senior Management | Completed. There were some delays in the beginning, but project worked through all challenges and reaching delivery targets |

| 9. Lack of adequate support from the National Partners | Operational and Strategic | Efforts by the SM in raising the issues during high level meetings and exchange of NVs, and discussions of project team members with the counterparts | Reducing. This risk has been significantly reduced after the designation of a new NPC |

The project Issue Log is maintained throughout the project implementation to capture potential issues to the project and associated response measures. The Project Manager shall maintain and update the Issue Log and ensure that issues are identified, communicated and managed effectively.

A number of potential issues are listed below.

<table>
<thead>
<tr>
<th>Description of issue</th>
<th>Type and category</th>
<th>Response / Countermeasures</th>
<th>Current situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrictions in official currency transactions and consequent occurrence of dual/black market exchange rate.</td>
<td>Financial</td>
<td>This is an external factor that neither UNDP nor Project team can have an impact on. The only countermeasure that can be taken is wider distribution of tender announcements among foreign companies. As foreign companies can be paid in hard currency, it will mitigate negative impact of black market exchange rate.</td>
<td>No change</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kaahka pipeline handover to the Government is delaying</td>
<td>Regulatory</td>
<td>Senior Management raised the issue on several occasions (the latest was the meeting with Minister of Agriculture and Water Economy in Dec 2018) with the high rank Government authorities and was promised to get resolution soon</td>
<td>Water Management Dept of Kaahka accepted water pipeline</td>
</tr>
<tr>
<td>Project registration extension is overdue</td>
<td>Regulatory</td>
<td>Senior Management raised the issue on several occasions (the latest was the meeting with Minister of Agriculture and Water Economy in Dec 2018) with the high rank Government authorities and was promised to get resolution soon</td>
<td>No change, but expected to reduce</td>
</tr>
<tr>
<td>Delay in project registration extension affected some project activities</td>
<td>Regulatory</td>
<td>The process of handover of some major project assets (tractor, irrigation infrastructure in Geokdepe and some others) is suspended due to delay in receiving of project registration certificate. Senior management raised this issue at high level meeting with the Government.</td>
<td>No change, but expected to reduce</td>
</tr>
<tr>
<td>Some major project activities can be delayed due to requirements of the National Customs Service.</td>
<td>Regulatory</td>
<td>Customs authorities require project registration certificate for custom clearance of goods and materials purchased for project activities, otherwise cargo can be kept until submission of required document. Senior management raised this issue at high level meeting with the Government.</td>
<td>No change, but expected to reduce</td>
</tr>
<tr>
<td>Automatic agro-weather station does not transmit data collected at the field.</td>
<td>Operational</td>
<td>Agro-weather station installed at Geokdepe Green polygon stopped data transmission after several months of proper functioning. The project will find an expert to resolve the issue.</td>
<td>No change, but expected to reduce</td>
</tr>
</tbody>
</table>

4. Lessons learned and follow-up steps (if applicable)

a) Please provide the lessons learned and further steps after the project’s closure.

<table>
<thead>
<tr>
<th>№</th>
<th>Lessons Learned</th>
<th>Follow-Up Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Since Kaahka pipeline reduced infiltration loss nearly to zero, water savings were redirected to irrigation of around 850 ha</td>
<td>In addition to water and energy consumption figures monitored in Kaahka, the project will look at the</td>
</tr>
</tbody>
</table>
of agricultural fields and created around 50 additional seasonal workplaces. improvement of living conditions of residents.

2. Key implementing partners, Ministry of Agriculture and Water Economy and its Water Design and Research Institute, most likely will not be able to do significant contributions to project activities that entail financial implications due to their weak financial standings. The project will try to get key implementing partners involved in project activities with in-kind contributions, for instance mobilize their workers for tree planting or other field works at Geokdepe site or use their vehicles/tracks for delivery of needed products, etc.

3. Establishment of production line of HDPE membrane requires support of international expert with multi-country experience and technical knowledge. The project will hire International Consultant on Polymers and Extrusion with hands-on international experience.

4. The Government linked Byori village to the central power grid right after the project completed installation of photovoltaic system (PV) for water pumping. After consultation with local authorities, the project will replace/reinstall the PV system from Byori to another remote village, so the equipment is used where really needed.

5. Due to the low amperage in the power grid system of Koneurgench etrap Dashoguz region, modern energy efficient pump installed there does not work. The project reached agreement with local Water Administration that they will replace/reinstall the pump to another pump station with sufficient/stable amperage level.

5. Transfer of Assets or other related matter

a) Please state on any past or future transfer of assets made within the project cycle (Attach list of equipment, cooperation frameworks with beneficiaries, etc.)

See attachment 1

6. Financial management

<table>
<thead>
<tr>
<th>Budget item</th>
<th>Total approved in 2019 (in USD)</th>
<th>Expenses + commitments</th>
<th>Budget utilization in % to planned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component 1</td>
<td>116,655.39</td>
<td>262,894.85</td>
<td>225.36</td>
</tr>
<tr>
<td>Component 2</td>
<td>909,021.83</td>
<td>680,262.65</td>
<td>74.83</td>
</tr>
<tr>
<td>Component</td>
<td>Amount 1</td>
<td>Amount 2</td>
<td>%</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Component 3</td>
<td>63,995.00</td>
<td>59,719.45</td>
<td>93.32</td>
</tr>
<tr>
<td>Component 4</td>
<td>87,295.00</td>
<td>47,218.40</td>
<td>54.09</td>
</tr>
<tr>
<td>Project management</td>
<td>35,740.01</td>
<td>32,645.75</td>
<td>91.34</td>
</tr>
<tr>
<td>Total delivery in 2019</td>
<td>1,212,707.23</td>
<td>1,082,741.10</td>
<td>89.28</td>
</tr>
<tr>
<td>In % to total project budget</td>
<td>19.30</td>
<td>17.23</td>
<td></td>
</tr>
</tbody>
</table>

Prepared by: Geldi Myradov, EERE Project Manager

Date: 30.12.2019
<table>
<thead>
<tr>
<th>PROJECT CODE</th>
<th>ASSET ID</th>
<th>PROFILE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>90400</td>
<td>000000000001</td>
<td>ITC</td>
<td>HP EliteBook 820 G2 with HP Care Pack 3Y Trv NBD NB Only HW</td>
</tr>
<tr>
<td>90400</td>
<td>000000000002</td>
<td>ITC</td>
<td>HP EliteBook 820 G2</td>
</tr>
<tr>
<td>90400</td>
<td>000000000003</td>
<td>ITC</td>
<td>HP EliteBook 820 G2</td>
</tr>
<tr>
<td>90400</td>
<td>000000000004</td>
<td>ITC</td>
<td>UltraSlim Docking Station 2013-Euro</td>
</tr>
<tr>
<td>90400</td>
<td>000000000005</td>
<td>ITC</td>
<td>UltraSlim Docking Station 2013-Euro</td>
</tr>
<tr>
<td>90400</td>
<td>000000000006</td>
<td>ITC</td>
<td>UltraSlim Docking Station 2013-Euro</td>
</tr>
<tr>
<td>90400</td>
<td>000000000007</td>
<td>ITC</td>
<td>Business Top Load Case</td>
</tr>
<tr>
<td>90400</td>
<td>000000000008</td>
<td>ITC</td>
<td>Business Top Load Case</td>
</tr>
<tr>
<td>90400</td>
<td>000000000009</td>
<td>ITC</td>
<td>Business Top Load Case</td>
</tr>
<tr>
<td>90400</td>
<td>000000000010</td>
<td>ITC</td>
<td>EliteDisplay E241i 24-in LED IPS Monitor</td>
</tr>
<tr>
<td>90400</td>
<td>000000000011</td>
<td>ITC</td>
<td>EliteDisplay E241i 24-in LED IPS Monitor</td>
</tr>
<tr>
<td>90400</td>
<td>000000000012</td>
<td>ITC</td>
<td>EliteDisplay E241i 24-in LED IPS Monitor</td>
</tr>
<tr>
<td>90400</td>
<td>000000000013</td>
<td>ITC</td>
<td>LaserJet PRO 400MFP printer + COPIER + FAX</td>
</tr>
<tr>
<td>90400</td>
<td>000000000014</td>
<td>ITC</td>
<td>Digital camera Nikon D90 + 18-55 lens</td>
</tr>
<tr>
<td>90400</td>
<td>000000000015</td>
<td>ITC</td>
<td>Projector Infocus IN1245TA (1024x768) Case for digital camera Nikon</td>
</tr>
<tr>
<td>90400</td>
<td>000000000016</td>
<td>ITC</td>
<td>Projector Infocus IN1245TA (1024x768) Case for digital camera Nikon SD card 8 Gb for digital camera</td>
</tr>
<tr>
<td>90400</td>
<td>000000000017</td>
<td>ITC</td>
<td>Projector screen Anchor Tripod</td>
</tr>
<tr>
<td>90400</td>
<td>000000000018</td>
<td>ITC</td>
<td>Mobile Phone Nokia 6303</td>
</tr>
<tr>
<td>90400</td>
<td>000000000019</td>
<td>ITC</td>
<td>Mobile Phone Nokia 6303</td>
</tr>
<tr>
<td>90400</td>
<td>000000000020</td>
<td>ITC</td>
<td>Mobile Phone Huawei G630</td>
</tr>
<tr>
<td>90400</td>
<td>000000000021</td>
<td>ITC</td>
<td>Mobile Phone Huawei G630</td>
</tr>
<tr>
<td>90400</td>
<td>000000000022</td>
<td>ITC</td>
<td>Mobile Phone Huawei G630</td>
</tr>
</tbody>
</table>
90400 000000000054 ITC Bag for laptop Tarigu
ITC/TKM/90400/029 N/A CN600-61 WDI M. Shaharov 24/12/2015 192.00 TMT 48864 N/A 62000 10003
90400 000000000055 ITC Printer Canon I-
ITC/TKM/90400/030 RWB39119 MF216N WDI G. Myradov 24/12/2015 1,359.00 TMT 48864 N/A 62000 10003
90400 000000000056 ITC LCD AOC
ITC/TKM/90400/031 D23F98A002500 I276VWM WDI Geodope (office in field camp) 24/12/2015 571.00 TMT 48864 N/A 62000 10003
90400 000000000057 ITC Keyboard Gigabyte
ITC/TKM/90400/032 SN144825004220 GK-KM7580 WDI M. Shaharov 24/12/2015 241.00 TMT 48864 N/A 62000 10003
90400 000000000058 HYME AKIRA air conditioner
HYME/TKM/90400/030 SN44825002420 AC-S 19HEGN1 WDI M. Shaharov 24/12/2015 25.00 TMT 48864 N/A 62000 10003
90400 000000000059 ITC M. Shaharov
ITC/TKM/90400/033 D23F98A002500 I276VWM WDI Geodope (office in field camp) 24/12/2015 192.00 TMT 48864 N/A 62000 10003
90400 000000000060 ITC Projector
ITC/TKM/90400/034 D23F98A002500 I276VWM WDI Geodope (office in field camp) 24/12/2015 192.00 TMT 48864 N/A 62000 10003
90400 000000000061 MRTV NISSAN PATROL 4WD
MRTV/TKM/90400/001 CHASSIS № 573298, TWSSLEFY61 UR7-HAJE WDI UN Building K.Bayliev 23/02/2016 22607.54 USD 49279 8448 62000 10003
90400 000000000062 FURN Office Table
FURN/TKM/90400/026 EEP560100 EPSILON WDI project office 03/03/2016 700.00 TMT 49287 N/A 62000 10003
90400 000000000063 FURN File cabinet semi-open
FURN/TKM/90400/027 SCM 8021 FILE CABINET WDI project office 03/03/2016 500.00 TMT 49287 N/A 62000 10003
90400 000000000064 FURN Metallic coat rack
FURN/TKM/90400/028 EKP 30515 EXOFORM VISITOR WDI project office 03/03/2016 400.00 TMT 49287 N/A 62000 10003
90400 000000000065 FURN Office chair
FURN/TKM/90400/029 EKP 30515 EXOFORM VISITOR WDI project office 03/03/2016 250.00 TMT 49287 N/A 62000 10003
90400 000000000066 FURN Mobile Phone
FURN/TKM/90400/031 S/N: SM-J510FN/DS Galaxy J5 2016y WDI project office 03/03/2016 2,300.00 TMT 49279 4848 62000 10003
90400 000000000067 ITC Notebook, E-Port Plus,
ITC/TKM/90400/36 Dell Latitude E6430 3KL38W1 Dell Latitude E6430 Ch. Taganov 28.12.2012 1,495.00 USD 38093 7764 62040 11602 Acquired from AF
90400 000000000068 ITC Notebook, E-Port Plus,
ITC/TKM/90400/37 Dell Latitude E6430 36G8JV1 Dell Latitude E6430 UN Office UNDP, PIU office 22.11.2012 1,495.00 USD 37399 7729 62040 11602 Acquired from AF
90400 000000000069 ITC Notebook, E-Port Plus,
ITC/TKM/90400/38 Dell Latitude E6430 3G38W1 Dell Latitude E6430 UN Office UNDP, PIU office 22.11.2012 1,495.00 USD 37399 7729 62040 11602 Acquired from AF
90400 000000000070 ITC Monitor Dell 22 P2213
ITC/TKM/90400/39 CN0Y57VF744452BB3F Dell 22" P2213 UN Office UNDP, PIU office 22.11.2012 164.00 USD 37399 7729 62040 11602 Acquired from AF
90400 000000000071 ITC Samsung A5 mobile phone
ITC/TKM/90400/41 R58J155XJTM SM-A510F/DS WDI project office 08/06/2017 2,083.00 TMT 52936 8924 62000 10003
A Project Code
B This is the Internal Reference used for the project - ex. 000000000001
C This is the general category e.g. Furniture, Vehicles etc in words - ITC for ITC equipment, MRTV - for vehicles, HYME for heavy Machinery, FURN for furniture
D This is the detailed description of the asset
E This is the asset tag as per laid down tagging convention e.g. ITC/TKM/90400/001 for a ITC item
F This is the serial number, normally available for electrical equipment and registration number for vehicles
G This is the asset Model as indicated in Invoice
H This is the Place where the asset is based and can be physically located - TKM/ASB/xxxxxxxx
I Person who is responsible for assets
J The date asset is received
K The cost as per Invoice and payment details
L This is the Currency used in the cost detail, if various currencies used try to standardize the register into one currency by conversions
M Voucher ID
N PO ID
O This is the funds used to purchase the asset e.g. UNDP, etc
P This is the donor used to purchase the asset e.g. UNDP, ECHO etc.